10 research outputs found

    Epstein-Barr Virus genome deletions in Epstein-Barr Virus-positive T/NK cell lymphoproliferative diseases

    Get PDF
    The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children

    The epitope arrangement on flavivirus particles contributes to Mab C10’s extraordinary neutralization breadth across Zika and dengue viruses

    No full text
    International audienceThe human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design

    A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

    No full text
    Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized

    Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus

    No full text
    Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV

    A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection

    No full text
    Infections with dengue (DENV) and Zika (ZIKV) viruses can induce cross-reactive antibody responses. Two immunodominant epitopes, to precursor membrane protein (prM) or the fusion loop epitope (FLE) on envelope (E) protein are recognized by cross-reactive antibodies1, 2, 3 that are not only poorly neutralizing, but can also promote increased viral replication and disease seerity via Fc-gamma receptor mediated infection of myeloid cells, a process termed antibody-dependent enhancement (ADE)1, 4, 5 . ADE is a significant concern for both ZIKV and DENV vaccines as the induction of poorly-neutralizing cross-reactive antibodies may prime an individual for ADE upon natural infection. In this report, we describe the design and production of covalently-stabilized ZIKV E-dimers, which lack prM and do not expose the immunodominant FLE. Immunization of mice with ZIKV E-dimers induces dimer-specific antibodies, which protected against ZIKV challenge during pregnancy. Importantly, the ZIKV E-dimer-induced response does not cross-react with DENV or induce ADE of DENV infection

    Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus

    No full text
    Dengue virus is a major pathogen and severe infections can lead to life threatening dengue hemorrhagic fever (DHF). Dengue exists as four serotypes and DHF is often associated with secondary heterologous infections. Antibody dependent enhancement (ADE) may drive higher virus loads in these secondary infections, and is purported to result from antibodies that recognize dengue but fail to fully neutralize. We have characterized two antibodies, 2C8 and 3H5, which bind to the envelope protein. 3H5 is highly unusual as it is both potently neutralizing, but promotes little if any ADE, whereas 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immune complexes of 3H5 and dengue virus do not efficiently interact with FcÎł receptors, which we propose is due to the binding mode of 3H5 and which constitutes the primary mechanism of how ADE is avoided

    A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

    No full text
    Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized
    corecore