10 research outputs found

    Case report: A novel EIF2B3 pathogenic variant in central nervous system hypomyelination/vanishing white matter

    Get PDF
    Leukodystrophies are a group of heterogeneous disorders affecting brain myelin. Among those, childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM) is one of the more common inherited leukodystrophies. Pathogenic variants in one of the genes encoding five subunits of EIF2B are associated with CACH/VWM. Herein, we presented a case of CACH/VWM who developed ataxia following a minor head injury. Brain magnetic resonance imaging showed extensive white matter signal abnormality. Diagnosis of CACH/VWM was confirmed by the presence of compound heterozygous variants i

    Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria

    Get PDF
    Methylmalonic acidemia (MMA) is a propionate pathway disorder caused by dysfunction of the mitochondrial enzyme methylmalonyl-CoA mutase (MMUT). MMUT catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA, an anaplerotic reaction which feeds into the tricarboxylic acid (TCA) cycle. As part of the pathological mechanisms of MMA, previous studies have suggested there is decreased TCA activity due to a toxic inhibition of TCA cycle enzymes by MMA related metabolites, in addition to reduced anaplerosis. Here, we have utilized mitochondria isolated from livers of a mouse model of MMA (Mut-ko/ki) and their littermate controls (Ki/wt) to examine the amounts and enzyme functions of most of the TCA cycle enzymes. We have performed mRNA quantification, protein semi-quantitation, and enzyme activity quantification for TCA cycle enzymes in these samples. Expression profiling showed increased mRNA levels of fumarate hydratase in the Mut-ko/ki samples, which by contrast had reduced protein levels as detected by immunoblot, while all other mRNA levels were unaltered. Immunoblotting also revealed decreased protein levels of 2-oxoglutarate dehydrogenase and malate dehydrogenase 2. Interesting, the decreased protein amount of 2-oxoglutarate dehydrogenase was reflected in decreased activity for this enzyme while there is a trend towards decreased activity of fumarate hydratase and malate dehydrogenase 2. Citrate synthase, isocitrate dehydrogenase 2/3, succinyl-CoA synthase, and succinate dehydrogenase are not statistically different in terms of quantity of enzyme or activity. Finally, we found decreased activity when examining the function of methylmalonyl-CoA mutase in series with succinate synthase and succinate dehydrogenase in the Mut-ko/ki mice compared to their littermate controls, as expected. This study demonstrates decreased activity of certain TCA cycle enzymes and by corollary decreased TCA cycle function, but it supports decreased protein quantity rather than toxic inhibition as the underlying mechanism of action. SUMMARY: Methylmalonic acidemia (MMA) is an inborn metabolic disorder of propionate catabolism. In this disorder, toxic metabolites are considered to be the major pathogenic mechanism for acute and long-term complications. However, despite optimized therapies aimed at reducing metabolite levels, patients continue to suffer from late complications, including metabolic stroke and renal insufficiency. Since the propionate pathway feeds into the tricarboxylic acid (TCA) cycle, we investigated TCA cycle function in a constitutive MMA mouse model. We demonstrated decreased amounts of the TCA enzymes, Mdh2 and Ogdh as semi-quantified by immunoblot. Enzymatic activity of Ogdh is also decreased in the MMA mouse model compared to controls. Thus, when the enzyme amounts are decreased, we see the enzymatic activity also decreased to a similar extent for Ogdh. Further studies to elucidate the structural and/or functional links between the TCA cycle and propionate pathways might lead to new treatment approaches for MMA patients

    Placental pathology in an unsuspected case of mucolipidosis type II with secondary hyperparathyroidism in a premature infant

    Get PDF
    Mucolipidosis type II (MLII, MIM 252500) is a lysosomal storage disorders caused by defects i

    Fatal COVID-19 infection in a patient with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: A case report

    Get PDF
    Long-chain fatty-acyl CoA dehydrogenase deficiency (LCHADD) is an inborn error of long chain fatty acid oxidation with various features including hypoketotic hypoglycemia, recurrent rhabdomyolysis, pigmentary retinopathy, peripheral neuropathy, cardiomyopathy, and arrhythmias. Various stresses trigger metabolic decompensation. Coronavirus disease 2019 (COVID-19) is a pandemic caused by the RNA virus SARS-CoV-2 with diverse presentations ranging from respiratory symptoms to myocarditis. We report a case of a patient with LCHADD who initially presented with typical metabolic decompensation symptoms including nausea, vomiting, and rhabdomyolysis in addition to mild cough, and was found to have COVID-19. She developed acute respiratory failure and refractory hypotension from severe cardiomyopathy which progressed to multiple organ failure and death. Our case illustrates the need for close monitoring of cardiac function in patients with a long-chain fatty acid oxidation disorder

    Epidermolysis bullosa with congenital absence of skin: Congenital corneal cloudiness and esophagogastric obstruction including extended genotypic spectrum of PLEC, LAMC2, ITGB4 and COL7A1

    Get PDF
    Epidermolysis bullosa (EB) is a rare and genetically heterogeneous disorder characterized by skin fragility and blister formation occurring spontaneously or after minor trauma. EB is accompanied by congenital absence of skin (EB with CAS) in some patients. Pathogenic variants o

    Screening of SLC25A13

    No full text

    Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria

    Full text link
    Methylmalonic acidemia (MMA) is a propionate pathway disorder caused by dysfunction of the mitochondrial enzyme methylmalonyl-CoA mutase (MMUT). MMUT catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA, an anaplerotic reaction which feeds into the tricarboxylic acid (TCA) cycle. As part of the pathological mechanisms of MMA, previous studies have suggested there is decreased TCA activity due to a “toxic inhibition” of TCA cycle enzymes by MMA related metabolites, in addition to reduced anaplerosis. Here, we have utilized mitochondria isolated from livers of a mouse model of MMA (Mut-ko/ki) and their littermate controls (Ki/wt) to examine the amounts and enzyme functions of most of the TCA cycle enzymes. We have performed mRNA quantification, protein semi-quantitation, and enzyme activity quantification for TCA cycle enzymes in these samples. Expression profiling showed increased mRNA levels of fumarate hydratase in the Mut-ko/ki samples, which by contrast had reduced protein levels as detected by immunoblot, while all other mRNA levels were unaltered. Immunoblotting also revealed decreased protein levels of 2-oxoglutarate dehydrogenase and malate dehydrogenase 2. Interesting, the decreased protein amount of 2-oxoglutarate dehydrogenase was reflected in decreased activity for this enzyme while there is a trend towards decreased activity of fumarate hydratase and malate dehydrogenase 2. Citrate synthase, isocitrate dehydrogenase 2/3, succinyl-CoA synthase, and succinate dehydrogenase are not statistically different in terms of quantity of enzyme or activity. Finally, we found decreased activity when examining the function of methylmalonyl-CoA mutase in series with succinate synthase and succinate dehydrogenase in the Mut-ko/ki mice compared to their littermate controls, as expected. This study demonstrates decreased activity of certain TCA cycle enzymes and by corollary decreased TCA cycle function, but it supports decreased protein quantity rather than “toxic inhibition” as the underlying mechanism of action

    Functional analysis of missense DARS2 variants in siblings with leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation

    No full text
    Biallelic pathogenic variants in the nuclear gene DARS2 (MIM# 610956), encoding the mitochondrial enzyme aspartyl-tRNA synthetase (MT-ASPRS) cause leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation (LBSL) (MIM# 611105), a neurometabolic disorder characterized by progressive ataxia, spasticity, developmental arrest or regression and characteristic brain MRI findings. Most patients exhibit a slowly progressive disease course with motor deterirartion that begins in childhood or adolescence, but can also occasionaly occur in adulthood. More severe LBSL presentations with atypical brain MRI findings have been recently described. Baker's yeast orthologue of DARS2, MSD1, is required for growth on oxidative carbon sources. A yeast with MSD1 knockout (msd1 Delta) demonstrated a complete lack of oxidative growth which could be rescued by wild-type MSD1 but not MSD1 with pathogenic variants. Here we reported two siblings who exhib-ited developmental regression and ataxia with different age of onset and phenotypic severity. Exome sequencing revealed 2 compound heterozygous missense variants in DARS2: c.473A>T (p.Glu158Val) and c.829G>A (p. Glu277Lys); this variant combination has not been previously reported. The msd1 Delta yeast transformed with plas-mids expressing p.Glu259Lys, equivalent to human p.Glu277Lys, showed complete loss of oxidative growth and oxygen consumption, while the strain carrying p.Gln137Val, equivalent to human p.Glu158Val, showed a signif-icant reduction of oxidative growth, but a residual ability to grow was retained. Structural analysis indicated that p.Glu158Val may interfere with protein binding of tRNAAsp, while p.Glu277Lys may impact both homodimerization and catalysis of MT-ASPRS. Our data illustrate the utility of yeast model and in silico analysis to determine pathogenicity of DARS2 variants, expand the genotypic spectrum and suggest intrafamilial variabil-ity in LBSL.(c) 2022 Elsevier Inc. All rights reserved
    corecore