12 research outputs found

    The Mitochondrial Genomes of the Zoonotic Canine Filarial Parasites Dirofilaria (Nochtiella) repens and Candidatus Dirofilaria (Nochtiella) Honkongensis Provide Evidence for Presence of Cryptic Species

    Get PDF
    Background Cutaneous dirofilariosis is a canine mosquito-borne zoonosis that can cause larva migrans disease in humans. Dirofilaria repens is considered an emerging pathogen occurring with high prevalence in Mediterranean areas and many parts of tropical Asia. In Hong Kong, a second species, Candidatus Dirofilaria hongkongensis, has been reported. The present study aimed to compare mitochondrial genomes from these parasites and to obtain population genetic information. Methods and Findings Complete mitochondrial genomes were obtained by PCR and Sanger sequencing or ILLU-MINA sequencing for four worms. Cytochrome oxidase subunit 1 sequences identified three as D. repens (all from Europe) and one as C. D. hongkongensis (from India). Mitochondrial genomes have the same organization as in other spirurid nematodes but a higher preference for thymine in the coding strand. Phylogenetic analysis was in contradiction to current taxonomy of the Onchocercidae but in agreement with a recent multi-locus p hylogenetic analysis using both mitochondrial and nuclear markers. D. repens and C. D. hongkongensis sequences clustered together and were the common sister group to Dirofilaria immitis. Analysis of a 2.5 kb mitochondrial genome fragment from macrofilaria or canine blood samples from Europe (42), Thailand (2), India (1) and Vietnam (1) revealed only small genetic differences in the D. repens samples including all European and the Vietnam sample. The Indian C. D. hongkongensis and the two Thai samples formed separate clusters and differences were comparatively large. Conclusion Genetic differences between Dirofilaria spp. causing cutaneous disease can be considerable whereas D. repens itself was genetically quite homogenous. C. D. hongkongensis was identified for the first time from the Indian subcontinent. The full mitochondrial genome sequence strengthens the hypothesis that it represents an independent species and the Thai samples might represent another cryptic species, Candidatus Dirofilaria sp. 'Thailand II', or a quite divergent population of C. D. hongkongensis

    Fifth European Dirofilaria and Angiostrongylus Days (FiEDAD) 2016

    Get PDF
    Peer reviewe

    Dot-blot assay for the semiquantitative detection of major dust mite allergens Derp1 and Derf1 in house dust

    No full text
    Mite allergens Derpl and Derfl were tested in 200 house dust samples using a nitrocellulose membrane- based dot-blot assay. The assay enables the mite allergens in a dust extract to be detected with results that can be visually read semiquantitatively within 30 min. Positive results obtained with this method were easily observed as brown dots. The Derp1 and Derf1 allergens were also precisely quantitated by a two-site monoclonal antibody based enzyme-linked immunosorbent assay. Results of Derp1 and Derf1 mite allergens measured from the two methods were compared. The semiquantitative analysis using Spearman's correlation yielded a correlation coefficient of 0.892 (P<0.01) for Derp1 and 0.872 (P<0.01) for Derf1. The sensitivity, specificity and accuracy were 94.4%, 76.9% and 86.5% for Derp1 whereas the sensitivity, specificity and accuracy for Derf1 were 95%, 77% and 86%, respectively

    Investigation on the Prevalence of Canine Microfilaremia in Thailand Using a Novel Microfluidic Device in Combination with Real-Time PCR

    No full text
    We conducted a survey of canine microfilaraemia in 768 dogs in Chanthaburi, Samut Sakhon, and Narathiwat provinces of Thailand using a novel semi-automated, microfluidic device that is easy and rapid to perform. Microfilariae species were identified using High Resolution Melting real-time PCR (HRM real-time PCR). The prevalence of canine microfilaremia was 16.2% (45/278) in Chanthaburi and 5.5% (12/217) in Samut Sakhon. The prevalence of canine microfilaremia in Narathiwat was 22.7% (67/273). Brugia pahangi and Dirofilaria immitis were the predominant species of filariae found in the infected dogs from Chanthaburi and Narathiwat, respectively. The low prevalence of canine microfilaremia of Samut Sakhon may reflect the success of the Soi Dog foundation’s efforts and the establishment of veterinary control programs. An effective disease control and prevention strategies is needed in Chanthaburi and Narathiwat to reduce the risks of zoonotic transmission of the parasites. An appropriate drug treatment should be given to infected dogs and prophylactic drugs are suggested to be given to dogs age ≤1-year-old to prevent filarial infection. The novel microfluidic device could be implemented for surveillance of filariae infection in other animals

    High resolution melting real-time PCR detect and identify filarial parasites in domestic cats

    No full text
    Objective: To detect and identify filarial parasites in dried blood spots (DBS) collected from domestic cats using high resolution melting real-time PCR (HRM RT-PCR). Methods: A total of 208 DBS were collected from domestic cats in a brugian filariasis endemic areas in Surat Thani Province, southern Thailand. Microfilariae were found in 9 blood slides using Giemsa-stained thick blood film. The extracted DNA from blood spot volumes of 10 and 20 μL DBS with positive filarial parasites in cats were performed using HRM RT-PCR method. The primers were designed based on the partial mitochondrial 12S rRNA gene for identifying Brugia malayi, Brugia pahangi, Dirofilaria immitis. All purified samples were then detected. Results: Using different volumes of 10 μL and 20 μL DBS could easily distinguish filarial parasites and showed similar results. PCR amplicons of Brugia malayi, Brugia pahangi and Dirofilaria immitis were determined at melting peak (temperature) of 75.70 77.46 and 73.56 respectively. All 9 positive DBS samples showed positive Brugia pahangi and similar nucleotide sequences. Conclusions: This HRM RT-PCR method is able to diagnose, identify and discriminate filarial parasites collected from DBS, which is simple and inexpensive compared with other probe-based genotyping methods. Furthermore, this method is useful to survey, prevent and control filariasis

    A miniPCR-Duplex Lateral Flow Dipstick Platform for Rapid and Visual Diagnosis of Lymphatic Filariae Infection

    No full text
    Lymphatic filariasis (LF) is a neglected major tropical disease that is a leading cause of permanent and long-term disability worldwide. Significant progress made by the Global Programme to Eliminate Lymphatic Filariasis (GPELF) has led to a substantial decrease in the levels of infection. In this limitation, DNA detection of lymphatic filariae could be useful due to it capable of detecting low level of the parasites. In the present study, we developed a diagnostic assay that combines a miniPCR with a duplex lateral flow dipstick (DLFD). The PCR primers were designed based on the HhaI and SspI repetitive noncoding DNA sequences of Brugia malayi and Wuchereria bancrofti, respectively. The limits of detection and crossreactivity of the assay were evaluated. In addition, blood samples were provided by Thais living in a brugian filariasis endemic area. The miniPCR-DLFD assay exhibited a detection limit of 2 and 4 mf per milliliter (mL) of blood for B. malayi as well as W. bancrofti, respectively, and crossamplification was not observed with 11 other parasites. The result obtained from the present study was in accordance with the thick blood smear staining for the known cases. Thus, a miniPCR-DLFD is an alternative tool for the diagnosis of LF in point-of-collection settings with a modest cost (~USD 5) per sample
    corecore