1,473 research outputs found

    Clinical and Experimental Applications of NIR-LED Photobiomodulation

    Get PDF
    This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction

    STORIES Statement: publication standards for healthcare education evidence synthesis

    Get PDF
    Fully copy of the STORIES statement - a checklist of reporting guidance for health education evidence synthesis Structured approach for Reporting In health education of Evidence Synthesis Background Evidence synthesis techniques in healthcare education have been enhanced through the activities of experts in the field and the Best Evidence Medical Education (BEME) collaborative. Despite this, significant heterogeneity in techniques and reporting of healthcare education systematic review still exist and limit the usefulness of such reports. The aim of this project was to produce the STORIES (STructured apprOach to the Reporting In healthcare education of Evidence Synthesis) statement to offer a guide for reporting evidence synthesis in health education for use by authors and journal editors. Methods A review of existing published evidence synthesis consensus statements was undertaken. A modified Delphi process was used. In stage one, expert participants were asked to state whether common existing items identified were relevant, to suggest relevant texts and specify any items they feel should be included. The results were analysed and a second stage commenced where all synthesised items were presented and participants asked to state whether they should be included or amend as needed. After further analysis, the full statement was sent for final review and comment. Results Nineteen experts participated in the panel from 35 invitations. Thirteen text sources were proposed, six existing items amended and twelve new items synthesised. After stage two, 25 amended consensus items were proposed for inclusion. The final statement contains several items unique to this context, including description of relevant conceptual frameworks or theoretical constructs, description of qualitative methodologies with rationale for their choice and presenting the implications for educators in practice of the results obtained. Conclusions An international expert panel has agreed upon a consensus statement of 25 items for the reporting of evidence synthesis within healthcare education. This unique set of items is focused on context, rather than a specific methodology. This statement can be used for those writing for publication and reviewing such manuscripts to ensure reporting supports and best informs the wider healthcare education community

    Serology describes a profile of declining malaria transmission in Farafenni, The Gambia

    Get PDF
    BACKGROUND: Malaria morbidity and mortality has declined in recent years in a number of settings. The ability to describe changes in malaria transmission associated with these declines is important in terms of assessing the potential effects of control interventions, and for monitoring and evaluation purposes. METHODS: Data from five cross-sectional surveys conducted in Farafenni and surrounding villages on the north bank of River Gambia between 1988 and 2011 were compiled. Antibody responses to MSP-119 were measured in samples from all surveys, data were normalized and expressed as seroprevalence and seroconversion rates (SCR) using different mathematical models. RESULTS: Results showed declines in serological metrics with seroprevalence in children aged one to 5 years dropping from 19 % (95 % CI 15-23 %) in 1988 to 1 % (0-2 %) in 2011 (p value for trend in proportions < 0.001) and the SCR dropping from 0.069 year(-1) (0.059-0.080) to 0.022 year(-1) (0.017-0.028; p = 0.004). The serological data were consistent with previously described drops in both parasite prevalence in children aged 1-5 years (62 %, 57-66 %, in 1988 to 2 %, 0-4 %, in 2011; p < 0.001), and all-cause under five mortality rates (37 per 1000 person-years, 34-41, in 1990 to 17, 15-19, in 2006; p = 0.059). CONCLUSIONS: This analysis shows accurate reconstruction of historical malaria transmission patterns in the Farafenni area using anti-malarial antibody responses. Demonstrating congruence between serological measures, and conventional clinical and parasitological measures suggests broader utility for serology in monitoring and evaluation of malaria transmission

    Multisensory and Motor Representations in Rat Oral Somatosensory Cortex

    Get PDF
    Abstract In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior
    • 

    corecore