31,312 research outputs found

    Acceptor-like deep level defects in ion-implanted ZnO

    Get PDF
    N-type ZnO samples have been implanted with MeV Zn⁺ ions at room temperature to doses between 1×10⁸ and 2×10¹⁰cm⁻², and the defect evolution has been studied by capacitance-voltage and deep level transient spectroscopy measurements. The results show a dose dependent compensation by acceptor-like defects along the implantation depth profile, and at least four ion-induced deep-level defects arise, where two levels with energy positions of 1.06 and 1.2 eV below the conduction band increase linearly with ion dose and are attributed to intrinsic defects. Moreover, a re-distribution of defects as a function of depth is observed already at temperatures below 400 K.This work was supported by the Norwegian Research Council through the Frienergi program and the Australian Research Council through the Discovery projects program

    Signatures of quantum phase transitions in parallel quantum dots: Crossover from local-moment to underscreened spin-1 Kondo physics

    Get PDF
    We study a strongly interacting "quantum dot 1" and a weakly interacting "dot 2" connected in parallel to metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits, which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias conductance measurements performed at finite temperatures.Comment: 7 pages, 7 figures. Accepted for publication in Phys. Rev.

    Heavy flavor kinetics at the hadronization transition

    Full text link
    We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to J. Phys.

    A spatially shifted beam approach to subwavelength focusing

    Full text link
    Although negative-refractive-index metamaterials have successfully achieved subwavelength focusing, image resolution is limited by the presence of losses. In this Letter, a metal transmission screen with subwavelength spaced slots is proposed that focuses the near-field beyond the diffraction limit and furthermore, is easily scaled from microwave frequencies to the optical regime. An analytical model based on the superposition of shifted beam patterns is developed that agrees very well with full-wave simulations and is corroborated by experimental results at microwave frequencies.Comment: 5 pages, 7 figures. Content updated following reviewer comments to match final published pape

    Fully nonlinear excitations of non-Abelian plasma

    Full text link
    We investigate fully nonlinear, non-Abelian excitations of quark-antiquark plasma, using relativistic fluid theory in cold plasma approximation. There are mainly three important nonlinearities, coming from various sources such as non-Abelian interactions of Yang-Mills (YM) fields, Wong's color dynamics and plasma nonlinearity, in our model. By neglecting nonlinearities due to plasma and color dynamics we get back the earlier results of Blaizot {\it et. al.}, Phys. Rev. Lett. 72, 3317 (1994). Similarly, by neglecting YM fields nonlinearity and plasma nonlinearity, it reduces to the model of Gupta {\it et. al.}, Phys. Lett. B498, 223 (2005). Thus we have the most general non-Abelian mode of quark-gluon plasma (QGP). Further, our model resembles the problem of propagation of laser beam through relativistic plasma, Physica 9D, 96 (1983). in the absence of all non-Abelian interactions.Comment: 8 pages, 2 figures, articl

    Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    Get PDF
    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed lateonset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulininduced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity.Fil: Lopez, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Johns Hopkins University School of Medicine; Estados UnidosFil: Aja, Susan. Johns Hopkins University School of Medicine; Estados UnidosFil: Aoki, Kazuhiro. University of Georgia; GreciaFil: Seldin, Marcus M.. Johns Hopkins University School of Medicine; Estados UnidosFil: Lei, Xia. Johns Hopkins University School of Medicine; Estados UnidosFil: Ronnett, Gabriele V. Johns Hopkins University School of Medicine; Estados UnidosFil: Wong, G. William. Johns Hopkins University School of Medicine; Estados UnidosFil: Schnaar, Ronald L.. Johns Hopkins University School of Medicine; Estados Unido

    Relativistic Modification of the Gamow Factor

    Get PDF
    In processes involving Coulomb-type initial- and final-state interactions, the Gamow factor has been traditionally used to take into account these additional interactions. The Gamow factor needs to be modified when the magnitude of the effective coupling constant increases or when the velocity increases. For the production of a pair of particles under their mutual Coulomb-type interaction, we obtain the modification of the Gamow factor in terms of the overlap of the Feynman amplitude with the relativistic wave function of the two particles. As a first example, we study the modification of the Gamow factor for the production of two bosons. The modification is substantial when the coupling constant is large.Comment: 13 pages, in LaTe

    Magnetic Catalysis in AdS4

    Full text link
    We study the formation of fermion condensates in Anti de Sitter space. In particular, we describe a novel version of magnetic catalysis that arises for fermions in asymptotically AdS4 geometries which cap off in the infra-red with a hard wall. We show that the presence of a magnetic field induces a fermion condensate in the bulk that spontaneously breaks CP symmetry. From the perspective of the dual boundary theory, this corresponds to a strongly coupled version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected, extra comments added in appendix. v3: extra comments about fermion modes in a hard wall background. v4: A final factor of

    Random matrix ensemble with random two-body interactions in presence of a mean-field for spin one boson systems

    Full text link
    For mm number of bosons, carrying spin (SS=1) degree of freedom, in Ω\Omega number of single particle orbitals, each triply degenerate, we introduce and analyze embedded Gaussian orthogonal ensemble of random matrices generated by random two-body interactions that are spin (S) scalar [BEGOE(2)-S1S1]. The embedding algebra is U(3)GG1SO(3)U(3) \supset G \supset G1 \otimes SO(3) with SO(3) generating spin SS. A method for constructing the ensembles in fixed-(mm, SS) space has been developed. Numerical calculations show that the form of the fixed-(mm, SS) density of states is close to Gaussian and level fluctuations follow GOE. Propagation formulas for the fixed-(mm, SS) space energy centroids and spectral variances are derived for a general one plus two-body Hamiltonian preserving spin. In addition to these, we also introduce two different pairing symmetry algebras in the space defined by BEGOE(2)-S1S1 and the structure of ground states is studied for each paring symmetry.Comment: 22 pages, 6 figure

    Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies

    Full text link
    Using the technique of quantum transport of the interfering pair we examine the Hanbury-Brown-Twiss (HBT) interferometry signatures for the particle-emitting sources of pions and kaons produced in the heavy ion collisions at GSI-FAIR energies. The evolution of the sources is described by relativistic hydrodynamics with the system equation of state of the first-order phase transition from quark-gluon plasma (QGP) to hadronic matter. We use quantum probability amplitudes in a path-integral formalism to calculate the two-particle correlation functions, where the effects of particle decay and multiple scattering are taken into consideration. We find that the HBT radii of kaons are smaller than those of pions for the same initial conditions. Both the HBT radii of pions and kaons increase with the system initial energy density. The HBT lifetimes of the pion and kaon sources are sensitive to the initial energy density. They are significantly prolonged when the initial energy density is tuned to the phase boundary between the QGP and mixed phase. This prolongations of the HBT lifetimes of pions and kaons may likely be observed in the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure
    corecore