731 research outputs found

    Electroproduction of the d* dibaryon

    Full text link
    The unpolarized cross section for the electroproduction of the isoscalar Jπ=3+J^\pi = 3^+ di-delta dibaryon d∗d^* is calculated for deuteron target using a simple picture of elastic electron-baryon scattering from the ΔΔ(7D1)\Delta \Delta (^7D_1) and the NN(3S1)NN (^3S_1) components of the deuteron. The calculated differential cross section at the electron lab energy of 1 GeV has the value of about 0.24 (0.05) nb/sr at the lab angle of 10∘^\circ (30∘^\circ) for the Bonn B potential when the dibaryon mass is taken to be 2.1 GeV. The cross section decreases rapidly with increasing dibaryon mass. A large calculated width of 40 MeV for d∗(ΔΔ7S3)d^*(\Delta\Delta ^7S_3) combined with a small experimental upper bound of 0.08 MeV for the d∗d^* decay width appears to have excluded any low-mass d∗d^* model containing a significant admixture of the ΔΔ(7S3)\Delta\Delta (^7S_3) configuration.Comment: 11 journal-style pages, 8 figure

    The relative resistance of children to sepsis mortality: from pathways to drug candidates

    Get PDF
    Attempts to develop drugs that address sepsis based on leads developed in animal models have failed. We sought to identify leads based on human data by exploiting a natural experiment: the relative resistance of children to mortality from severe infections and sepsis. Using public datasets, we identified key differences in pathway activity (Pathprint) in blood transcriptome profiles of septic adults and children. To find drugs that could promote beneficial (child) pathways or inhibit harmful (adult) ones, we built an in silico pathway drug network (PDN) using expression correlation between drug, disease, and pathway gene signatures across 58,475 microarrays. Specific pathway clusters from children or adults were assessed for correlation with drug-based signatures. Validation by literature curation and by direct testing in an endotoxemia model of murine sepsis of the most correlated drug candidates demonstrated that the Pathprint-PDN methodology is more effective at generating positive drug leads than gene-level methods (e.g., CMap). Pathway-centric Pathprint-PDN is a powerful new way to identify drug candidates for intervention against sepsis and provides direct insight into pathways that may determine survival

    Detection of Anti-Fungal Sapwood Extractives in Non-Durable Scots Pine (Pinus sylvestris), Rubberwood (Hevea brasiliensis) and Jelutong (Dyera costulata)

    Get PDF
    A general laboratory bioassay method of Woodward and Pearce (1985) was adopted to detect anti-fungal activity of sapwood or heartwood extractives of 5 Malaysian hardwoods [dark red meranti heartwood (Shorea spp.), red balau heartwood (Shorea spp.), kulim heartwood (Scorodocarpus borneensis), jelutong sapwood (Dyera costulata) and rubberwood sapwood (Hevea brasiliensis), including the temperate Pinus sylvestris (Scots pine sapwood). The heartwoods of these species and Scots pine sapwood are known to be highly resistant to decay by soft-rotting Ascomycetes and anamorphic fungi (about 1-7% wood mass loss), while the sapwoods of rubberwood and jelutong had much reduced soft rot resistance (respectively 35, 32% wood mass loss) but obviously prone to sapstain and mold attack, including that of Scots pine. Crude methanol extracts of woodmeal samples of each wood species were loaded on to thin-layer chromatography plates at between 0.003 and 0.1 g fresh mass equivalent of woodmeal per spot so as to optimize resolution of separated compounds, and developed with chloroform:methanol solvent (ratio 19:1). The dried plates were sprayed with fresh fungal spores of Cladosporium cucumerinum and incubated at >90% RH for 5 days in the dark. Presence of anti-fungal compounds was revealed by white regions along the solvent transect for each extract of each species where inhibited spore germination and mycelial growth of C. cucumerinum occurred. Comparisons of anti-fungal activity of extracts between species and between sapwood and heartwood were made. Results revealed that several zones of inhibitory activity, indicated by their Rf-values, were clearly visible on chromatographic separations of methanol extracts of these 5 wood species. The inhibitory zones for 2 heartwood extracts (except kulim) did not move from the origin which was also resistant to infection. However inhibition zones were also detected for the sapwoods of rubberwood, jelutong and Scots pine against C. cucumerinum despite the known sapstain and decay susceptibility of these wood substrates. The presence of hitherto unidentified anti-fungal compounds in the sapwoods of these species may elicit limited potency or narrow spectrum protection from fungal infection and onset of stain or decay

    Macrostate Data Clustering

    Full text link
    We develop an effective nonhierarchical data clustering method using an analogy to the dynamic coarse graining of a stochastic system. Analyzing the eigensystem of an interitem transition matrix identifies fuzzy clusters corresponding to the metastable macroscopic states (macrostates) of a diffusive system. A "minimum uncertainty criterion" determines the linear transformation from eigenvectors to cluster-defining window functions. Eigenspectrum gap and cluster certainty conditions identify the proper number of clusters. The physically motivated fuzzy representation and associated uncertainty analysis distinguishes macrostate clustering from spectral partitioning methods. Macrostate data clustering solves a variety of test cases that challenge other methods.Comment: keywords: cluster analysis, clustering, pattern recognition, spectral graph theory, dynamic eigenvectors, machine learning, macrostates, classificatio

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    An explicit formula for the coefficients in Laplace's method

    Full text link
    Laplace's method is one of the fundamental techniques in the asymptotic approximation of integrals. The coefficients appearing in the resulting asymptotic expansion, arise as the coefficients of a convergent or asymptotic series of a function defined in an implicit form. Due to the tedious computation of these coefficients, most standard textbooks on asymptotic approximations of integrals do not give explicit formulas for them. Nevertheless, we can find some more or less explicit representations for the coefficients in the literature: Perron's formula gives them in terms of derivatives of an explicit function; Campbell, Fr\"oman and Walles simplified Perron's method by computing these derivatives using an explicit recurrence relation. The most recent contribution is due to Wojdylo, who rediscovered the Campbell, Fr\"oman and Walles formula and rewrote it in terms of partial ordinary Bell polynomials. In this paper, we provide an alternative representation for the coefficients, which contains ordinary potential polynomials. The proof is based on Perron's formula and a theorem of Comtet. The asymptotic expansions of the gamma function and the incomplete gamma function are given as illustrations.Comment: 14 pages, to appear in Constructive Approximatio

    Vertical Confinement and Evolution of Reentrant Insulating Transition in the Fractional Quantum Hall Regime

    Full text link
    We have observed an anomalous shift of the high field reentrant insulating phases in a two-dimensional electron system (2DES) tightly confined within a narrow GaAs/AlGaAs quantum well. Instead of the well-known transitions into the high field insulating states centered around ν=1/5\nu = 1/5, the 2DES confined within an 80\AA-wide quantum well exhibits the transition at ν=1/3\nu = 1/3. Comparably large quantum lifetime of the 2DES in narrow well discounts the effect of disorder and points to confinement as the primary driving force behind the evolution of the reentrant transition.Comment: 5 pages, 4 figure

    Glassy Phase Transition and Stability in Black Holes

    Full text link
    Black hole thermodynamics, confined to the semi-classical regime, cannot address the thermodynamic stability of a black hole in flat space. Here we show that inclusion of correction beyond the semi-classical approximation makes a black hole thermodynamically stable. This stability is reached through a phase transition. By using Ehrenfest's scheme we further prove that this is a glassy phase transition with a Prigogine-Defay ratio close to 3. This value is well placed within the desired bound (2 to 5) for a glassy phase transition. Thus our analysis indicates a very close connection between the phase transition phenomena of a black hole and glass forming systems. Finally, we discuss the robustness of our results by considering different normalisations for the correction term.Comment: v3, minor changes over v2, references added, LaTeX-2e, 18 pages, 3 ps figures, to appear in Eour. Phys. Jour.

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
    • …
    corecore