51,716 research outputs found
Reestimation of the production spectra of cosmic ray secondary positrons and electrons in the ISM
A detailed calculation of the production spectra of charged hadrons produced by interactions of cosmic rays in the interstellar medium is presented along with a thorough treatment of pion and muon decays. Newly parameterized inclusive cross sections of hadrons were used and exact kinematic limitations were taken into account. Single parametrized expressions for the production spectra of both secondary positrons and electrons in the energy range .1 to 100 GeV are presented. The results are compared with other authors' predictions. Equilibrium spectra using various models are also presented
Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective
Inference and optimization of real-value edge variables in sparse graphs are
studied using the Bethe approximation and replica method of statistical
physics. Equilibrium states of general energy functions involving a large set
of real edge-variables that interact at the network nodes are obtained in
various cases. When applied to the representative problem of network resource
allocation, efficient distributed algorithms are also devised. Scaling
properties with respect to the network connectivity and the resource
availability are found, and links to probabilistic Bayesian approximation
methods are established. Different cost measures are considered and algorithmic
solutions in the various cases are devised and examined numerically. Simulation
results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated,
Figs. 1 to 3 replace
Recommended from our members
A unified model of the electrical power network
Traditionally, the different infrastructure layers, technologies and management activities associated with the design, control and protection operation of the Electrical Power Systems have been supported by numerous independent models of the real world network. As a result of increasing competition in this sector, however, the integration of technologies in the network and the coordination of complex management processes have become of vital importance for all electrical power companies.
The aim of the research outlined in this paper is to develop a single network model which will unify the generation, transmission and distribution infrastructure layers and the various alternative implementation technologies. This 'unified model' approach can support ,for example, network fault, reliability and performance analysis. This paper introduces the basic network structures, describes an object-oriented modelling approach and outlines possible applications of the unified model
Recommended from our members
Update of an early warning fault detection method using artificial intelligence techniques
This presentation describes a research investigation to access the feasibility of using an Artificial Intelligence (AI) method to predict and detect faults at an early stage in power systems. An AI based detector has been developed to monitor and predict faults at an early stage on particular sections of power systems. The detector for this early warning fault detection device only requires external measurements taken from the input and output nodes of the power system. The AI detection system is capable of rapidly predicting a malfunction within the system. Artificial Neural Networks (ANNs) are being used as the core of the fault detector. In an earlier paper [11], a computer simulated medium length transmission line has been tested by the detector and the results clearly demonstrate the capability of the detector. Today’s presentation considers a case study illustrating the suitability of this AI Technique when applied to a distribution transformer. Furthermore, an evolutionary optimisation strategy to train ANNs is also briefly discussed in this presentation, together with a ‘crystal ball’ view of future developments in the operation and monitoring of transmission systems in the next millennium
Recommended from our members
Power system fault prediction using artificial neural networks
The medium term goal of the research reported in this paper was the development of a major in-house suite of strategic computer aided network simulation and decision support tools to improve the management of power systems. This paper describes a preliminary research investigation to access the feasibility of using an Artificial Intelligence (AI) method to predict and detect faults at an early stage in power systems. To achieve this goal, an AI based detector has been developed to monitor and predict faults at an early stage on particular sections of power systems. The detector only requires external measurements taken from the input and output nodes of the power system. The AI detection system is capable of rapidly predicting a malfunction within the system . Simulation will normally take place using equivalent circuit representation. Artificial Neural Networks (ANNs) are used to construct a hierarchical feed-forward structure which is the most important component in the fault detector. Simulation of a transmission line (2-port circuit ) has already been carried out and preliminary results using this system are promising. This approach provided satisfactory results with accuracy of 95% or higher
Recommended from our members
Early warning fault detection using artificial intelligent methods
This paper describes a research investigation to access the feasibility of using an Artificial Intelligence (AI) method to predict and detect faults at an early stage in power systems. An AI based detector has been developed to monitor and predict faults at an early stage on particular sections of power systems. The detector for this early warning fault detection device only requires external measurements taken from the input and output nodes of the power system. The AI detection system is capable of rapidly predicting a malfunction within the system. Artificial Neural Networks (ANNs) are being used as the core of the fault detector. A simulated medium length transmission line has been tested by the detector and the results demonstrate the capability of the detector. Furthermore, comments on an evolutionary technique as the optimisation strategy for ANNs are included in this paper
Effective hadronic Lagrangian for charm mesons
An effective hadronic Lagrangian including the charm mesons is introduced to
study their interactions in hadronic matter. Using coupling constants that are
determined either empirically or by the SU(4) symmetry, we have evaluated the
absorption cross sections of and the scattering cross sections of
and by and mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses
iopart.cl
- …