38,302 research outputs found
The universal functorial equivariant Lefschetz invariant
We introduce the universal functorial equivariant Lefschetz invariant for
endomorphisms of finite proper G-CW-complexes, where G is a discrete group. We
use K_0 of the category of "phi-endomorphisms of finitely generated free
RPi(G,X)-modules". We derive results about fixed points of equivariant
endomorphisms of cocompact proper smooth G-manifolds.Comment: 33 pages; shortened version of the author's PhD thesis, supervised by
Wolfgang Lueck, Westfaelische Wilhelms-Universitaet Muenster, 200
Trajectory generation for road vehicle obstacle avoidance using convex optimization
This paper presents a method for trajectory generation using convex optimization to find a feasible, obstacle-free path for a road vehicle. Consideration of vehicle rotation is shown to be necessary if the trajectory is to avoid obstacles specified in a fixed Earth axis system. The paper establishes that, despite the presence of significant non-linearities, it is possible to articulate the obstacle avoidance problem in a tractable convex form using multiple optimization passes. Finally, it is shown by simulation that an optimal trajectory that accounts for the vehicle’s changing velocity throughout the manoeuvre is superior to a previous analytical method that assumes constant speed
Recommended from our members
Digital measurement of lightning impulse parameters using curving fitting algorithms
This paper describes the application of curve fitting algorithms to aid the evaluation of lightning impulse parameters. A number of popular curve fitting algorithms have been evaluated and compared. Investigations using the genetic algorithm and other optimisation methods for the purpose of curve fitting have also been carried out and will be described
Indistinguishability of independent single photons
The indistinguishability of independent single photons is presented by
decomposing the single photon pulse into the mixed state of different transform
limited pulses. The entanglement between single photons and outer environment
or other photons induces the distribution of the center frequencies of those
transform limited pulses and makes photons distinguishable. Only the single
photons with the same transform limited form are indistinguishable. In details,
the indistinguishability of single photons from the solid-state quantum emitter
and spontaneous parametric down conversion is examined with two-photon
Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the
indistinguishability are discussed, where the usage of spectral filter is
highlighted.Comment: 6 pages, 3 figure
Stability of bubble nuclei through Shell-Effects
We investigate the shell structure of bubble nuclei in simple
phenomenological shell models and study their binding energy as a function of
the radii and of the number of neutron and protons using Strutinsky's method.
Shell effects come about, on the one hand, by the high degeneracy of levels
with large angular momentum and, on the other, by the big energy gaps between
states with a different number of radial nodes. Shell energies down to -40 MeV
are shown to occur for certain magic nuclei. Estimates demonstrate that the
calculated shell effects for certain magic numbers of constituents are probably
large enough to produce stability against fission, alpha-, and beta-decay. No
bubble solutions are found for mass number A < 450.Comment: 9 pages and 9 figures in the eps format include
Modifying monolayer behaviour by incorporating subphase additives and improving Langmuir–Blodgett thin film deposition on optical fibres
Experiments showing the possibility of modifying the behaviour of calix[4]resorcinarene monolayers at the air–water interface and optimising the deposition of multilayer coatings onto optical fibres are presented. The nature of the subphase is fundamental to the behaviour of monolayers and their utility in coating and sensing applications. Here we show initial studies exploring the modification of the calix[4]resorcinarene monolayer–water interaction through the introduction of dipole altering alcohol additives to the aqueous subphase. We explored the effect of this modification for three small alcohols. The resulting isotherms of the materials showed a reduction in the surface pressure and area per molecule required in order for the monolayer to reach its point of collapse. Incorporation of alcohols shifted the point of collapse, leading to the application of ethanol being successful in improving the transfer of material via Langmuir–Blodgett coating onto optical fibres at lower pressures. This method may prove useful in allowing greater control over future sensor surface coatings
Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance
In this letter we present a real space density functional theory (DFT)
localized basis set semi-empirical pseudopotential (SEP) approach. The method
is applied to iron and magnesium oxide, where bulk SEP and local spin density
approximation (LSDA) band structure calculations are shown to agree within
approximately 0.1 eV. Subsequently we investigate the qualitative
transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find
that the SEP method is particularly well suited to address the tight binding
transferability problem because the transferability error at the interface can
be characterized not only in orbital space (via the interface local density of
states) but also in real space (via the system potential). To achieve a
quantitative parameterization, we introduce the notion of ghost semi-empirical
pseudopotentials extracted from the first-principles calculated Fe/MgO bonding
interface. Such interface corrections are shown to be particularly necessary
for barrier widths in the range of 1 nm, where interface states on opposite
sides of the barrier couple effectively and play a important role in the
transmission characteristics. In general the results underscore the need for
separate tight binding interface and bulk parameter sets when modeling
conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic
Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density
We calculate the two-pion correlation function for an expanding hadron source
with a finite baryon density. The space-time evolution of the source is
described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT)
radius is extracted after effects of collective expansion and multiple
scattering on the HBT interferometry have been taken into account, using
quantum probability amplitudes in a path-integral formalism. We find that this
radius is substantially smaller than the HBT radius extracted from the
freeze-out configuration.Comment: 4 pages, 2 figure
Laboratory observation of a nonlinear interaction between shear Alfv\'{e}n waves
An experimental investigation of nonlinear interactions between shear
Alfv\'{e}n waves in a laboratory plasma is presented. Two Alfv\'{e}n waves,
generated by a resonant cavity, are observed to beat together, driving a low
frequency nonlinear psuedo-mode at the beat frequency. The psuedo-mode then
scatters the Alfv\'{e}n waves, generating a series of sidebands. The observed
interaction is very strong, with the normalized amplitude of the driven
psuedo-mode comparable to the normalized magnetic field amplitude () of the interacting Alfv\'{e}n waves.Comment: 10 pages, 4 figures, submitted to Phys. Rev. Let
- …