36,591 research outputs found

    The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    Full text link
    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk.Comment: 34 pages, 24 figures, accepted for publication by A&

    Interference effects in f-deformed fields

    Full text link
    We show how the introduction of an algeabric field deformation affects the interference phenomena. We also give a physical interpretation of the developed theory.Comment: 6 pages, Latex file, no figures, accepted by Physica Script

    Tests of Two-Body Dirac Equation Wave Functions in the Decays of Quarkonium and Positronium into Two Photons

    Full text link
    Two-Body Dirac equations of constraint dynamics provide a covariant framework to investigate the problem of highly relativistic quarks in meson bound states. This formalism eliminates automatically the problems of relative time and energy, leading to a covariant three dimensional formalism with the same number of degrees of freedom as appears in the corresponding nonrelativistic problem. It provides bound state wave equations with the simplicity of the nonrelativistic Schroedinger equation. Here we begin important tests of the relativistic sixteen component wave function solutions obtained in a recent work on meson spectroscopy, extending a method developed previously for positronium decay into two photons. Preliminary to this we examine the positronium decay in the 3P_{0,2} states as well as the 1S_0. The two-gamma quarkonium decays that we investigate are for the \eta_{c}, \eta_{c}^{\prime}, \chi_{c0}, \chi_{c2}, \pi^{0}, \pi_{2}, a_{2}, and f_{2}^{\prime} mesons. Our results for the four charmonium states compare well with those from other quark models and show the particular importance of including all components of the wave function as well as strong and CM energy dependent potential effects on the norm and amplitude. The results for the \pi^{0}, although off the experimental rate by 15%, is much closer than the usual expectations from a potential model. We conclude that the Two-Body Dirac equations lead to wave functions which provide good descriptions of the two-gamma decay amplitude and can be used with some confidence for other purposes.Comment: 79 pages, included new sections on covariant scalar product and added pages on positronium decay for 3P0 and 3P_2 state

    Modification of Z Boson Properties in Quark-Gluon Plasma

    Full text link
    We calculate the change in the effective mass and width of a Z boson in the environment of a quark-gluon plasma under the conditions expected in Pb-Pb collisions at the LHC. The change in width is predicted to be only about 1 MeV at a temperature of 1 GeV, compared to the natural width of 2490±\pm7 MeV. The mass shift is even smaller. Hence no observable effects are to be expected.Comment: 7 pages latex file with 6 embedded PS figure

    Personalized Pancreatic Tumor Growth Prediction via Group Learning

    Full text link
    Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data, in order to discover high-level features from multimodal imaging data. A deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient's tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of 86.8% +- 3.6% and RVD of 7.9% +- 5.4% on a pancreatic tumor data set, outperforming the DSC of 84.4% +- 4.0% and RVD 13.9% +- 9.8% obtained by a previous state-of-the-art model-based method

    Two-Loop Self-Energy and Multiple Scattering at Finite Temperature

    Get PDF
    One and two loop self-energies are worked out explicitly for a heavy scalar field interacting weakly with a light self-interacting scalar field at finite temperature. The ring/daisy diagrams and a set of necklace diagrams can be summed simultaneously. This simple model serves to illustrate the connection between multi-loop self-energy diagrams and multiple scattering in a medium.Comment: 15 pages including 7 figures; v2. with appendix added, accepted by PR

    Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)

    Full text link
    The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe3O4 film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe3O4 film. Quantum confinement of the t2g states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let
    • …
    corecore