49,270 research outputs found

    Surface roughness influence on the quality factor of high frequency nanoresonators

    Get PDF
    Surface roughness influences significantly the quality factor of high frequency nanoresonators for large frequency - relaxation times within the non-Newtonian regime, where a purely elastic dynamics develops. It is shown that the influence of sort wavelength roughness, which is expressed by the roughness exponent H for the case of self-affine roughness, plays significant role in comparison with the effect of the long wavelength roughness parameters such as the rms roughness amplitude and the lateral roughness correlation length. Therefore, the surface morphology can play important role in designing high-frequency resonators operating within the non-Newtonian regime.Comment: 13 pages, 4 figures, To appear in J. Appl. Phys. (2008

    Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine

    Get PDF
    An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed

    Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment

    Full text link
    We develop a theoretical analysis of four-wave mixing used to generate photon pairs useful for quantum information processing. The analysis applies to a single mode microstructured fibre pumped by an ultra-short coherent pulse in the normal dispersion region. Given the values of the optical propagation constant inside the fibre, we can estimate the created number of photon pairs per pulse, their central wavelength and their respective bandwidth. We use the experimental results from a picosecond source of correlated photon pairs using a micro-structured fibre to validate the model. The fibre is pumped in the normal dispersion regime at 708nm and phase matching is satisfied for widely spaced parametric wavelengths of 586nm and 894nm. We measure the number of photons per pulse using a loss-independent coincidence scheme and compare the results with the theoretical expectation. We show a good agreement between the theoretical expectations and the experimental results for various fibre lengths and pump powers.Comment: 23 pages, 9 figure

    Perspective on Quark Mass and Mixing Relations

    Get PDF
    Recent data indicate that Vubλ4(0.22)4V_{ub}\cong \lambda^4 \cong (0.22)^4, while mtm_t seems to be 174174 GeV. The relations md/msms/mbδλ2Vcbm_d/m_s\sim m_s/m_b \sim \delta \sim \lambda^2 \simeq \vert V_{cb}\vert and mu/mcmc/mtδ2λ4Vubm_u/m_c\sim m_c/m_t \sim \delta^2 \sim \lambda^4 \sim \vert V_{ub}\vert suggest that %a plausible clean separation of the %origin of the quark mixing matrix: the down type sector is responsible for Vus\vert V_{us}\vert and Vcb\vert V_{cb}\vert, while VubV_{ub} comes from the up type sector. Five to six parameters might suffice to account for the ten quark mass and mixing parameters, resulting in specific power series representations for the mass matrices. In this picture, δ\delta seems to be the more sensible expansion parameter, while λmd/msδ\lambda \cong \sqrt{m_d/m_s} \sim \sqrt{\delta} is tied empirically to (Md)11=0(M_d)_{11} = 0.Comment: 10 pages, ReVtex, no figure

    Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets

    Full text link
    We examine the two-pion interferometry for a granular source of quark-gluon plasma droplets. The evolution of the droplets is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the HBT radius RoutR_{out} decreases if the initial size of the droplets decreases. On the other hand, RsideR_{side} depends on the droplet spatial distribution and is relatively independent of the droplet size. It increases with an increase in the width of the spatial distribution and the collective-expansion velocity of the droplets. As a result, the value of RoutR_{out} can lie close to RsideR_{side} for a granular quark-gluon plasma source. The granular model of the emitting source may provide an explanation to the RHIC HBT puzzle and may lead to a new insight into the dynamics of the quark-gluon plasma phase transition.Comment: 5 pages, 4 figure

    Acceptor-like deep level defects in ion-implanted ZnO

    Get PDF
    N-type ZnO samples have been implanted with MeV Zn⁺ ions at room temperature to doses between 1×10⁸ and 2×10¹⁰cm⁻², and the defect evolution has been studied by capacitance-voltage and deep level transient spectroscopy measurements. The results show a dose dependent compensation by acceptor-like defects along the implantation depth profile, and at least four ion-induced deep-level defects arise, where two levels with energy positions of 1.06 and 1.2 eV below the conduction band increase linearly with ion dose and are attributed to intrinsic defects. Moreover, a re-distribution of defects as a function of depth is observed already at temperatures below 400 K.This work was supported by the Norwegian Research Council through the Frienergi program and the Australian Research Council through the Discovery projects program
    corecore