37,965 research outputs found

    Drift waves in the linear regime

    Get PDF
    Verifying drift wave linear theory by external excitation of drift waves in collision plasm

    Superconductivity in spinel oxide LiTi2O4 epitaxial thin films

    Full text link
    LiTi2O4 is a unique material in that it is the only known oxide spinel superconductor. Although bulk studies have demonstrated that superconductivity can be generally described by the Bardeen-Cooper-Schreiffer theory, the microscopic mechanisms of superconductivity are not yet resolved fully. The sensitivity of the superconducting properties to various defects of the spinel crystal structure provides insight into such mechanisms. Epitaxial films of LiTi2O4 on single crystalline substrates of MgAl2O4, MgO, and SrTiO3 provide model systems to systematically explore the effects of lattice strain and microstructural disorder. Lattice strain that affects bandwidth gives rise to limited variations in the superconducting and normal state properties. Microstructural disorder such as antiphase boundaries that give rise to Ti network disorder can reduce the critical temperature, but Ti network disorder combined with Mg interdiffusion can affect the superconducting state much more dramatically. Thickness dependent transport studies indicate a superconductor-insulator transition as a function of film thickness regardless of lattice strain and microstructure. In addition, surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness.Comment: 25 pages, 7 figures, v2 - expanded Fig 1,2,7 with added discussion

    Anomalous Soft Photons in Hadron Production

    Full text link
    Anomalous soft photons in excess of what is expected from electromagnetic bremsstrahlung have been observed in association with the production of hadrons, mostly mesons, in high-energy (K+)p, (pi+)p, (pi-)p, pp, and (e+)(e-) collisions. We propose a model for the simultaneous production of anomalous soft photons and mesons in quantum field theory, in which the meson production arises from the oscillation of color charge densities of the quarks of the underlying vacuum in the flux tube. As a quark carries both a color charge and an electric charge, the oscillation of the color charge densities will be accompanied by the oscillation of electric charge densities, which will in turn lead to the simultaneous production of soft photons during the meson production process. How the production of these soft photons may explain the anomalous soft photon data will be discussed. Further experimental measurements to test the model will be proposed.Comment: 19 pages, 2 figures, to be published in Physical Review

    Spin-transfer mechanism for magnon-drag thermopower

    Full text link
    We point out a relation between the dissipative spin-transfer-torque parameter β\beta and the contribution of magnon drag to the thermoelectric power in conducting ferromagnets. Using this result we estimate β\beta in iron at low temperatures, where magnon drag is believed to be the dominant contribution to the thermopower. Our results may be used to determine β\beta from magnon-drag-thermopower experiments, or, conversely, to infer the strength of magnon drag via experiments on spin transfer

    Novel Bose-Einstein Interference in the Passage of a Fast Particle in a Dense Medium

    Full text link
    When an energetic particle collides coherently with many medium particles at high energies, the Bose-Einstein symmetry with respect to the interchange of the exchanged virtual bosons leads to a destructive interference of the Feynman amplitudes in most regions of the phase space but a constructive interference in some other regions of the phase space. As a consequence, the recoiling medium particles have a tendency to come out collectively along the direction of the incident fast particle, each carrying a substantial fraction of the incident longitudinal momentum. Such an interference appearing as collective recoils of scatterers along the incident particle direction may have been observed in angular correlations of hadrons associated with a high-pTp_T trigger in high-energy AuAu collisions at RHIC.Comment: 10 pages, 2 figures, invited talk presented at the 35th Symposium on Nuclear Physics, Cocoyoc, Mexico, January 3, 2012, to be published in IOP Conference Serie

    The role of magnetic anisotropy in spin filter junctions

    Full text link
    We have fabricated oxide based spin filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin filter junctions. Until recently, spin filters have been largely comprised of polycrystalline materials where the spin filter barrier layer and one of the electrodes are ferromagnetic. These spin filter junctions have relied on the weak magnetic coupling between one ferromagnetic electrode and a barrier layer or the insertion of a nonmagnetic insulating layer in between the spin filter barrier and electrode. We have demonstrated spin filtering behavior in La0.7Sr0.3MnO3/chromite/Fe3O4 junctions without nonmagnetic spacer layers where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the non-isostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr2O4 barrier layers.Comment: 7 pages, 7 figure

    Azimuthal Asymmetry of Direct Photons in High Energy Nuclear Collisions

    Full text link
    We show that a sizeable azimuthal asymmetry, characterized by a coefficient v_2, is to be expected for direct photons produced in non-central high energy nuclear collisions. This signal is generated by photons radiated by jets interacting with the surrounding hot plasma. The anisotropy is out of phase by an angle π/2\pi/2 with respect to that associated with the elliptic anisotropy of hadrons, leading to negative values of v_2. Such an asymmetry, if observed, could be a signature for the presence of a quark gluon plasma and would establish the importance of jet-plasma interactions as a source of electromagnetic radiation.Comment: New title. Final versio

    Radial Flow from Electromagnetic Probes and Signal of Quark Gluon Plasma

    Get PDF
    A first attempt has been made to extract the evolution of radial flow from the analysis of the experimental data on electromagnetic probes experimentally measured at SPS and RHIC energies. The pTp_T spectra of photons and dileptons measured by WA98 and NA60 collaborations respectively at CERN-SPS and the photon spectra obtained by PHENIX collaboration at BNL-RHIC have been used to constrain the theoretical models, rendering the outcome of the analysis largely model independent. We argue that the variation of the radial velocity with invariant mass is indicative of a phase transition from initially produced partons to hadrons at SPS and RHIC energies.Comment: One LaTeX and 9 eps files, to appear in Phys. Rev.
    • …
    corecore