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Drift Waves in the Linear Regime

R. E. Rowberg and A. Y. Wong

Department of Physics, University of California, Los Angeles, California

ABSTRACT

A method of external excitation of density gradient drift waves in

a stable, collision dominated plasma	 is presented whereby the linear
I

theory of drift waves 	 is verified. The procedure permits limitation of 'G

the perturbation amplitude such that ec 1 AT < 0.1. This represents a

marked advance in the study of drift waves since non- linear saturation

effects present in all previous experiments on these waves are avoided.

The driven oscillations are coherent, nearly sinusoidal modes on which

measurements of w and k as a function of the plasma- parameters are

made.	 In this manner the	 linear dispersion relation derived from the
1

fluid equations is verified demonstrating the strong stabilizing effect

of transverse diffusion resulting from ion viscosity.	 In connection with

this an additional	 dampingrecess resulting from ion	 loss at the p

J	 cathodes is introduced whereby complete stabilization of the plasma to

drift waves is possible. Next, the dependence of the growth rate on the

phase angle between the density and potential perturbation is shown in

the regime where viscous damping	 is not dominant. Finally verification

of the dependence of the axial wavelength on the sheath. conditions at

the plasma. cathode boundary and on the length of the plasma column

Is demonstrated.
w.
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i . INTRODUCTION

A. Scope

In this work we report on a method of investigating th`e linear

behavior of drift waves in a collision dominated plasma. Taking ad-

vantage of the fact that drift waves can be stabili zed i n abounded
i

plasma such as in a Q-device, we are able to externally excite these 	 f
t

oscillations and study their characteristics. The method on external r

excitation has the advantage that we are able to look at small ampli-

tude haves(k-^T' 0.1) wherein non-linear processes have a negligible w

effect on the behavior of these oscillations. This is not the case

in the unstable regime where all-previous investigations of drift waves

Have taken place. Consequently, our method of study represents a mark-

ed advance in analyzing the behavior of these waves.
,

B. Basic Descri ption of Dr ift Waves

In as inhomogeneous plasma immersed In a magnetic field, E3, there

are waves associated with density and temperature gradients. Such waves

are low frequency, electrostatic oscillations which propagate a l most

perpendicular to both B and the gradients. This perpendicular-propa -

gation Is In the direction  of_ the electron diamagnetic drift and the

phase velocity of the wave is approatirna-t-ely that of this drift. These

"drift" waves also propagate in the Axial direction (para llel to B)

and possess a very long l ongitudinal wavelength,	 Z	 For a plasma
bounded in the axial direction these oscil lations reflect off the ends

acid form standing waves with the boundary conditions determining z
In a plasma dominated by collisions, the drift wave is normally un-

stable as a result of finite ion inertia,.flnite Larmor rad ius effects,	 t

Y,
and electron-ion collisions. , :rThere three effects combine with the zero	 2.

as
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order density, gradient to cause any initial drift wave--like pertur-

bation to grow in amplitude. In addition there are damping processes

which can stabilize the plasma. One such mechanism 1s ion--ion collisions

which diffuses the density perturbation transverse to 13. Another damp-

Ing mechanism which can exist occurs when the plasma is bounded axially

such as in a Q-device. This process is due to ion loss at these bounding

end plates. tinder certain conditions., to be discussed below, these two

mechanisms can combine to stabilize the plasma against drift waves. It

is in this regime that the experiment described below is performed.

Drift waves belong to a class of microinstabilities which have

received a great deal of attention in recent years. This is becauso

they can occur in all plasmas which are not in`e'quilibrium as is the

case with confined plasmas. The drift instability in particular is a

result of the density gradient inherent to a confined plasma, Of further

importance is that this instabVIity is suspected of being one of the

mechanisms responsible for the anomalous diffusion observed in con--

trolled fusion devices, e.g. steilerator pumpout. I The reason for this

Is that there is a net radial transport of particles outward arising 1.

from the fluctuating electric field e of -unstable drift waves. Diffusion

rates calculated from diffusion processes resulting from these waves

l ' 2 ' 3are much larger than those of classical diffusion.In addition



^t

less (electron-ion collisions neglected)	 limit. Such work is described

In articles by Rudakov and Sagdeev (1960), 5 Kadometsev and Timofeev
R

(1962) 6 and Rosenbluth and	 <rall	 (1963),,	 1 . These works	 invol°ved drift

Instabilities excited by density and temperature gradients. The first

work on collisional plasmas was performed by Sagdeev and Moiseev (1963)9

and Chen (1964 and	 1965). 10 Their treatment consisted of solving the

fluid equations for drift waves driven by density gradients. Coppi

(1967) 11 extended this work by 	 including	 ion-ion co H i s i ons demonstrate-

Ing that such collisions have a stabilizing effect on the drift wave.

Severa l experimental observations of drift wave like oscillations 4

In thermal ly ionized Cs or K plasmas were made by D'Angelo and ^^fotley
t

(1963) 0 12 Lashinsky	 (196^1);
.I
	and Bucheinikov	 (1964) ( ^ among others. <<	 1

'	 However while these waves had characteristics In common with those pre-

dicted for density gradient drift waves, Hendel
3
 has pointed out that

i`

certain discrepancies appear in these observations which make identifi-

cation of these oscillations as this type of d rift wave difficult. The

first positive identification of density gradient drift waves was made

by Hendei, Chu and Poletzer (1967). 3 Their work verified the theoretical

work of Coppi	 regarding the stabilization of drift waves by ion viscosity.

The experiment to be described in th i s paper also makes positive

Identification of the density gradient drift wave and demonstrates

the important contribution of ion viscosity. However, unlike the exper-- F

tmonts just described which Involved unstable drift waves and conse-

quently non-linear processes, we are able to perform our experiment i n

the linear regime by use of the technique of external excitation of these

oscillations which allows us to l imit the perturbation amplitude to

^'^ KT	 0. I . We can therefore use this ;procedure for the verification i

^ m

11	 p



5
of the linear dispersion relation as in the case of ion acoustic %.caves.15

i	 The principal points checked for the drift waves in this manner are the

real and imaginary frequencies, the phase angle between the density and

potential perturbations, and the axial wavelength. Similar excitation

techniques have also been used by Hai and Wong (1968)
16
 for the inves-

tigation of large amplitude drift waves.

In section 11 we present the linear the theory of drift waves
i

deriving a dispersion relation and expressions for the real and Imagin-

ary frequencies. We then obtain as expression for the phase angle between

N

the density and potential per't'urbations. Finally we derive an expression

for end plate damping based on ion recombination at the cathodes. This

shows that under certain experimental conditions end plate clamping can

stabilize the drift wave. Section Ill contains a description of the ex-

perimen-1°al.apparatus-end procedure. Finally in Section IV we present the

experimental results and compare these results to those theoretically

predicted.



.	
I. THEORY

We wish to calculate a dispersion rolation for the density gra-

dient drift wave. Following the procedure of Chen lO and Hendel, Chu,

and Poiitzer3 we solve the linearized fluid equations in a rectangular

geometry for a magnetically confined, inhomogeneous plasma. Such a sys-

tem is displayed in Figure 1 We then obtai n expressions for the axial

wavelength of the dri ft wave as a fu nction of plasma pa rameters, the

phase angle between the density and potential perturbations, and the

damping rate due to ion loss at the end p l ates.

In order to perform the calculation we make the following assump-

tions:

I)	 ,. We may use the f l u i d (,,quati on_, since (0 ^'^ coo ^v^,t where	 v. ` is the

electron-ion  collision f regwency, 	 w.	 Is the ion cyclotron fro

p quen,cy , and	 w	 Is the dri f •!• wave f requency.

t2). 8-Orl kT'
Q^ ^.
	 I	 so that E I = -V	 Here no kT and	 are

the therma l and magnetic energies and EI	 is the perturbed elec-

tric field. no , T, and 0 are the zero order- density, temperature,

and magnetic field.

(3). The axial magnetic fiel d (along z)	 i s uniform and constant

'	 (4). Axial	 ion motion and variation arc neglected since K ^^
	 ts1.

Where v
iih	

is the ion thermal	 velocity.`

(5_). El ectron inertia	 is neglected.

(6) . ky	 kz < <	 kp so that we may assume quasi-neutral ity. k1 , kz,

and k^ are the perpendicular (to B), parallel, and Bebeye wave

numbers.

(7). There is a zero density gradient in the negative x direction

zw

6

, n



(Figure I) dK) and na	 Is constant.

(8). All first order quantities vary as expC-i ( t -kxr-kyy-kzz)3.

This implies that kx r n0/no , the density gradient scale, length,

so that the wave is localixa in the x direction

(9). K , K « v©th so that the temperature Is constant. In addition

T Is the same for both ions and electrons. v eth = kT/me, the

electron thermal velocity.

The f i u l d .equations for our system can be written down as follow:,;

for electrons (q=-e, M=0) and ions (q=4-e) perpendicular to the magnetic

field,

for electrons parallel to R, and

a
f

the continuity equation. n and v are equal to n i +no and v l +vo respective-

ly where the subscript I indicates perturbed quantities and o indicates

zero order quantities, p is the scalar pressure and is equal to nkT,

is the pressure tensor (ions only), and Vey Is the electron-lon collis-

Ion frequency. For the zero order steady state motion Eq. (1) is solved	 v 1

to give

c via	 .,

t4) <.	 Vora	 $ Y10 can	 Vey	 uC7



To solve for The first order motion we l inearize  Eqs . (1) and (7)

us I n.9 flie form of Tt
with the ,impl ification3

and Eq. (ai) for I'ho zoro

Usi ng the assumpti ons Ii

substitute them Into the

gi ven by Shkarofsky, Dernst o i n, and Robinson, 7

that the co I I I s i ona I term I s g i von by n'Y tlt4 7t vy

order ve Ioc ity arI s I ng I n the vl•VA v 1 term.

stod we solvo for tho first order voIocities and

linearized continuity oquations for ions and

electrons. Making the approximations (^«/Wc ) L< 1 and wave Iocei iza-

ti on In the x direction tho terms Involving  kx
(n 1 /no ) and ( y Au)d can

be dropped. The approximations are val id experimentally although the lo-

calization condition holds well only for mode number ? 2,. As a result

of th is procedure we obts in

Yl	 y	 K"f	 Y ^ k	 AD WY10 	 ^c ^	 1

for inns, and

1

for electrons. Here we have defined C - (k .L ^t )2, where k1 kX + k•y
z

and Is the ion cyclotron  radius, .(fir' ) _ (=	 >1^l , _where Vet

z veIs the ion-ion col I isfon frequency, and (t 	 'So lvin)	 -tti(U 	 g	 JJ
-	 l

Eqs. (5) and (6) for-rte/n 0 respectively anal. equating g'ivds us the dis

pers i on" relation for co l l i s i ona i drift waves. This Is

W2 
	L ..^ ^y	 stab) -•1 	 .M. , o

(7) w b + w b ky 	 '` °^^i^ i ^I

w1
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This equation is identical fo that derived by Dupree 2 using a kinectic

approach and nearly the same as the one derived by HendeI, Chu,-an'd

Pol itzer. 3 !~urther in the I imit tl> co and b e- e- I Eq. (7) reduces' to that

obtained by Chen. 10 Eq. (7) is in general solved numerically. However

by expanding the square root in the limit b2 4< 1 and t -1 -44 kyvD (the

latter condition allows us to drop the -last term in Eq. M))) we can

obtain approximate forms for the real frequency ( W ij ) and growth rate

tc 5 ) which demonstrates the phys'scs Involved. These are

toA	
kvo
	
b1

(8)	 W^ ^	 y	
t
ty

+ 6+
^l

In the limit be-4.1  and #L—Poo we recover the expressions derived by 	 ,.. '.

Chen10	
^!

(10)	 2. o-' y Vo)Z b'L jj 	 w = 
k__Y VD

In thi s l imit the growth rate is due to a phase shift between the den	 =i
'	 lc

sity and potential perturbation., Th is puts a component of the first

order ion motion in the x-direction in phase with the density perturba-

tion causing n l to increase in magnitude. 1 - f we now introduce ion vis-

cosity through finite Larmor radius MR) effects and ion-ion col I

lisions (i.e. keeping terms involving b and t1 ) a stab II I zing mecha n-

ism is provided which permits wa to become 1 0. This is a result of

R

.. s ' :.	 _ .	 ^ - ;._ _	 o.V ..?.saw:;,._.. ^.°si; °`tma^..E	 c	 _	 A?7ti"'^	 e	 ^	 avt_ ..r,.men	 xa._..aa,^o^iw..s,	 axiumi
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diffusion across (k )-I generated by the viscous forces arising from FLR

and ion-ion collisions. Such diffusion causes the gave to diminish in amp-

l itude. Eq . (9) shows that • stabilization ( (O 
g
=0) occurs when t 	 (I -b) .

tL Is the ti meme i t takes the Ions to d i f f use across ( k L) I by way of ton-Ion

collisions.Jho 1-b correction means that thethe FLR reduces the distance ane

therefore the effective time required for the viscous diffusion to take

place. This correction arises from the terms O+b) and (I-b) in the d isper-

sion relation, Eq.M . Similar terms are present in the dispersion relation

derived by Mendel, Chu and Politzer 3 but were not considered in the stab-

ility analysis. The significance of ter is that it is the time required

for the perturbed electron flu id to expand along the field li nes against

electron--ion collisions over a distance 0, z )ry it thereby establishing the

perturbed potential, ^^ . ^'r in turn generates the x motion of ions neces-

sary for the wave to propagate and grow. Therefore stability is achieved

If the transverse diffusion time due to FLR and ion-ion collisions is

equal to or less than the electron expansion time. This situation results

In a decayed perturbation before ^, can be set--up. As we 'increase the mag-

netic field from the stability point, t1 (l --b) becomes greater than t,, and

the growth rate is positive and increasi ng. The latter is a resu lt of the r
AV

Increase in the term in Eq.(9) containing viscous effects, E1-b-tp/11 ],

being domi nant over the decrea se i n the porti onon of 
w 

g (Eq . (9)) resulti ng

from the n l - a phase shift (Eq.(10)). The approximate range of values of

the viscous term where this takes place  i s 0 -:5 E I --b-t it /tl 1 0.5. Beyond

this the portion of LO 
9 

due to the phase shift becomes dominant and C^.^g

decreases with i ncreasing B. Therefore the growth rate shows a maximum at

some intermediate  vaIue of B.

Stabilization also  occurs; at very small values o, .'tl (t it ->> k v0)
y`

.	 even though tt^« tL O --b) . In thi's case a sma I 1 t,, means a sma l I l _

4	 }
r.........icu.2... 1I. 3T47+t^lgl 	 .]¢..^1i1^	 x_..	 .. ••	 _
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phase angle and a smal l resultant growth mechanism. 
0 

If we decrease

t II for a fixed  vaIue of ` t y a point will be reached where the growth

rate due fo tho the n l - ¢ phase angle (Eq. (10)) becomes less than the

transverse diffusion rate due to ion viscosity and the weave damps out.

:	 E
This process can be expressed quantitatively by keeping the term 2/t li t.L

In Eq. (7) and solving this equation in the limit b « I and t,,« t l ,	
n

{

The approximate g rowth rate becomes 10

'	 a

b (Icy vp)^,

Therefore wj = .0 when t.L	 [b (k vD ) Ztil -1 .
Y
	 The right side of thi s equ a•,

ion Is ,just the growth time due to the n l -P, phase shift as seen fro n

Eq. (10). Since both sides of this expression vary as no, (B) 4 , and (m)4,

only k remains as a vari^^1, 	 I n the experiment under study t	 lies.	 z	 i^	 _C

-between the limiting cases presented and consequently both stabilizi ng

r

processes must be i ncluded. When this is done the approximateexpression	 ,.

for cog becomes

is

r	
J

I

The presence of the last term in the large bracket of Eq. ( 12) means	 i

that stability is achieved (Wg 0) for values of [ I -b-t, j /tL ] > 0.

Moreover for the experimental conditions present the viscous portion 	 ,>

of Eq. ( 12) dom i na-1 es (i.e. L0 3  increases with increasing magnetic field)

for values of [I-b-t„ /ty ] up to 0.7 which is a larger range than in

the case where t-
'44 k

yvD . Tberefore we are in the viscous regime when	 , r

Y

..may.^^ ^.,^' _...	 _a......k....':+s4
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Eb4.t	 /tL 	2: 0.3 for our particular experiment.

With regard to kz 
we 

wish fo briefly discuss the effects of the

sheaths of a thermally ionized plasma at the cathodes of a Q--devise

on determining the allowed values of k
z
 - Chen has shown that the sheath

structure has a pronounced effect on the effoctive axial wavelength,

For electron rich sheaths, which are good conductors, the perturbation

Is zero at the sheath edge and	 2L where L Is the column length.

Ion rich sheaths, on the other hand, provide an insulating boundary

which permits a finite perturbation of the sheath-plasma boundary. There-

fore	 A	 2L in this case. Chen	 has derived an expression giving the

allowed values of k based on the boundary and plasma conditions. This
z

Is

4. C)

KZ L	 K? L	 L	 (j-	 eubl-T111t(13)	 2-1t	
TL	 U >0

U Is defined as the plasma potential with respect to the grounded cathodes.

For U < 0 the sheaths are electron rich and for U > 0 they are Ion

rich.	 Eq.	 (13)	 Is experimentally verified	 in section 4.

We next comment on the phase angle	 0	 between the density (nl)

and Potential	 perturbatir,.-, is. As has been stated this angle 	 is re-

spons li ble for the growth mechanism of the drift waves. 10 We can derive

an expression for	 e	 from Eqs.	 (5) and (6). By subtracting Eq.	 (6) from

(5) and solving for n,	 in terms of	 vie can imme-dialely write down
7

for I-an E) "A

R	 Y V'C'	 tt an
(14)	 b ut)	 til

I 
L2d

^"	 _	 ..	 -ti	
-..	

A^ _	 ^	 -	 s.r.m^..va^at'._,..	 .... _. .,^ .....	 .... .. __ 	 vs_ ^nvu lYY'§n52__.4a_._.._.^3
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When t1--Pc4 the expression becomos	 F

(I5)	 tavi	 2 b (fcyvp) J6.^^ -^	
KY 

vp
E

where we have used Eq. (10) for 	 d	 We note that in this 11mIt wa 	 x

varies directly with 0	 This is demonstrared experimentally in sec•-

tion 4.

In the viscous regime (b+tr, /ty r 0.3) , however, w9 no longer

varies directly with 9 	 The principal contribution of ion viscosity
a

to tan ®	 is to increase the value of Or, as B i ncreases (t;q. (8)).

However both b and kyvD decrease as B gets larger and therefore tan 9

will be decreasing for this case (Eq. (14)). The growth rate, on the:

other hand, i s increasing for the reasons discussed above (see Erq.(i2)).

Therefore when ion viscosity dominates the behavior of the drift wave

the growth rate will increase even though a is decreasing. i.e. the
I

principal effect of ion viscos ity is to d i ffuse away the density per-	 ,

turbat'ion and this process has little effect on the magnitude of the
J

phase angle.

The final point we wish to discuss is the phenomenon of end p late

R
damping. 

Is 
This provides an additional damping mechanism lnd^pendent of

the drift wave processes just discussed. The damping is a result of ion

toss at the bounding cathodes due to recomb ination. Depending on the t

sheath structure at these cathodes the Loss rate can be Large enough

to stabilize the drift wave. This will occur , when the sheaths are ion

rich. Plasma ions.-are then able to easily escape to the cathodes bui

are hindered from returning by the potential barrier at the plasma-sheath

boundary. Such ci rcumstances increases the probability of recombination.

Since recombined ions are replaced by ions formed from the neutra l

iv	

r

.o...
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x
beau I-lie Information contained in tho perturbation is gradually lost.

If the rate of ion loss to the cathodes is , greater than any drift wave

growth rate in the plasma, the plasma will be stable. A simple calcu-

lation derived in a manner suggested by Chen 
19 

will give us an exprea--

sion for this damping rate.

The damping rate is defined as

q 	 N' 
8) 
t

where N I = Ln i is the total number of perturbed ions per unit area in

the plasma column of length L and	 j, -b is the rate at which these

tons are lost to the cathodes For ion rich sheaths a flux J1

z[nlvith 
+ nov lz] is incident of the two cathodes. v lz is the perturbed

ion velocity along c and v Ith is the ion thermal velocity. Since

v iz
« vith we neglect the term containing v

lz
.

1 0 On the first bounce

off the cathode a fraction (1-p) J 
I 
is lost due fo recombination. p is

the probability of ionization  and is defined as2O

L &(T)
(17)	 P =-	 It La(T)

where La(T) = exp[(U
W
-Ur)/kl"] is the Langmuir-Saha equation. Uw is the	 J

work function of the cathode and U  is the ionization potential of the

neutrals. The current not recombined, pJ
I
, is reflected back toward the

plasma where a fraction J p exp[- eU/kT] (U > 0 , ion_ sheath) escapes the

sheath. The current not escapingp g (I-ex p[-eU/kT1>pJ ( is reflected back to

the cathode whereupon a fraction (1-p)(1-exp[--eU/kT])pJ
I
 is lost. This

process continues and f at is ,just the sum over all bounces of the

loss at each bounce. We than have

n

r

,
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where we have assumed an infinite number of bounces. This is justified

since the transit time for an ion in the sheath is several orders of mag-

nitude Less than the drift wave growth time. Substituting Eqs. (17),

(18), and the expression for N  Into Eq. (16) we obtain

(19)	 w= 2 Y► ^^D

as the damping rate in the presence of ion sheaths -. A similar calcul-

ation for electron  rich sheaths yields

This expression is much smaller because of the expEeU/kTD in the

numerator. Consequently end plate damping is largest in the case of

strong ion sheaths and smallest in the case of electron sheaths.

We note that Eq. (19) is insensitive to changes in the magnetic

field and inversly proportional to variation in the length of the plasma

column. In the experiment we necessarily measure the net dampinq of the

drift wave which is a combination of the linear growth rate and the end

plate damping. The net damping will vary through the growth rate only



I I I e EXPER I MENTAL SET--UP

A. Apparatus

The experiment is performed on a Q--device 2l which produces a

quiescent, highly Ionized  (40-r00;') K or Cs plasma,  The plasma Is

formed by contact ionization of K or Cs atoms from an atomic beam

on the surface of a hot tungsten plate ( ► 2200°K) and thermionic emis-

sion of electrons by the plate. The plasma is in thermodynamic equili-

brium with the hot- cathodes and is at a temperature of 0.2 ev. By

varying the flux in the atomic beam vie can vary the plasma density from

109 to 10 12 cm-3
.
 The plasma forms a cylindrical column with a diameter

of 5.8 cm and a nominal column length of 60 cm. It is radially confined

by an axial magnetic field which is continuously variable from 0 to

4200 gauss, in addition our machine has the unique feature that the

length of the plasma column can be varied during operation. This Is

accomplished by mounting the cathode assembly on vacuum sealed bellows

placed at the ends on the vacuum chamber. A total variation of the col-

umn length of 25 cm is possible with the bellows,

B. Preliminary Adjustments

Certain conditions must be achieved in order to perform the ex-

periment. First of all the effects of ` large temperature gradients

(T /T ti I cm ) must be considered in performing this experiment. It is

necessary to separate the regions of large temperature and density

gradient (T I /T ti no/no ti I cm 1 ) in order to avoid confusion between

density gradient drift waves and those excited by temperature gradients

and their associated electric fields. In r)ur experiment this is achiev

l„



6

ed by using a large tungsten Ionizer plate (5.8 cm in diameter) so

that the neutral flux falls will Inside the edge of the plate. This

results in a smal I temperature gradient where the density gradient

is laorge O.e. T I /T N no/noti 	cm	 and a separation of the -two

types of oscillations as seen In Figure 2.

It is also necessary that the probes and cathodes be aligned re-

lative to the magnetic field so that the measurement of position de-

pendent quantities are accurate. By use of narrow electron and laser

beams we can achieve alignment to within one mm. This Is verified by

our floating potential profiles which demonstrates that the measured'

profiles are within one mm of tile diameter of the cathodes.

C.	 fxperimental Procedure

The plasma is first stabilized against drift oscillations by a

combination of end plate damping and ion viscous damping. We are

then able to generate the drift wave by applying an external signal

at the appropriate frequency to-a grid 
22 

Inserted radially Into the

plasma (FigUre 3). The signal source Is an audio oscillator and the

signal amplitude of the driver is maintained so that el,/kT<0.1. This

allows us to remain in the linear regime. The excitation grid is

maintained at floating potential by inserting a capacitor (I.OPf)

between the grid and the oscillator. This means that no steady state

current is drawn by the grid. The grid is a 1.5xl.5 cm wire mesh con-

structed of 0.0025 cm Ta wire with 20 lines per cm. The wire mesh

requires no frame to keep it rigid thus minimizing the perturbing



r•

I of l uenco on the plasma. The p lanepane of the grid Is oriented Para l l e l to

the magnetic field. The grid Iead which also supports the wire mosh Is

0.025 cm Ta wire which is electrostatically shielded so as to insure

that excitation takes place only at the grid. Tho oscillation is ro-

ceived by a shielded Langmuir probo which is either biased ai• the ion

saturation point to observe n  or floated to observe 
^l 

With regard

to the Fatter it is necessary to avoid the i nstrument phase shi fts

brought about by the stray capacitance of the receiving network and 1-ho

Load resistance (RL ) of the probe. Since tho latter changes from 3xIQ5

ohms when the probe is fIoa'l , ing to W0
3 
ohms when it is biased there wI ll

be a largo phase shift introduced between n I and	
I 
by the receivi ng

networks. This is eliminated by using a "bootstrap" technique to

eliminate the capacitive l oad ing of the floating probe. 
23 

Using a
i

4	 unity gain operational amplifier with input impedence of WO 7 ohms

and 2pf for the measurement of	 I , we are able to reduce the system

phase shift between n l and	
i 
to less than 1°.

The probe signal is observed on an oscilloscope and: a gave ana-

lyzer (Figure 3). By using the analyzer as the driving source in Its

tracking generator mode, we.can measure the frequency response dir-

ectly as we sweep the oscil lator. Th is permlII's direct measurement

of the resonant or real frequency of the drift wave. In order to mea-

sure the imaginary frequency we insert a tone burst generator between`
n

the oscillator andand the excitation grid (Figure 3). We set the game of I

the tone burst to ailow enough oscillations thro
•
ugh to establish -a

steady state wave in the plasma. The driving signal is then removed
`f

and the subsequent damping of the wave is observed on the scope

r

mot.
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F i gu ro 3) r The damp i ,ng rata measured in this mooner is a combination

of the end plate damping and tho linear growth rates,

Radial potential, density, and wave amplitude profi les are

measured by motorized Langmuir probes which permits direct display

of i,hese profiles on an X-Y recorder. A sat of typical profiles is

displayed in Figure 2. Axial wave variation is measured by Langmuir

probes which move along the field linos. These probes can rotate in

the cross sectional plane of the plasma.

44
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IV.	 EXPER11'.1ENTAL RESULTS

In this section the experimental results are presented, Wo be-

gin by discussing the qualitative features which Identify the density

gradient drift wave. A more detailed discussion of the axial wave-

length foll. , !. comparing the experimental results to the theoretical

predictions. Next, verificotion of the linear dispersion relation Is

presented with measurement of the real frequency and growth rata; as a

function of noth the magnetic field and the plasma column 16ngth.

Finally we present measuremen
t
s of the phase angle betwoon the density

and potential perturbations and compare them to their corresponding

growth rates.

A.	 Qualitative Features

There are several qualitative features of density gradient drift

waves which are readily observed. Thesd include both the predicted

characteristics which	 identify the drift wave as well as features

connected with the phenomenon of external excitation of these waves.

The externally excited drift wave appears as almost sinusoldal,

single modes. The wave Is observed to propagate in the azimuthal direc-

tion parallel to the electron diamagnetic drift. The azimuthal wave

number (corresponding to k )	 is fixed by the periodicity requirement as
y

m/r	 where m is the mode number and r	 is the position of the maximum of
0	 0

the radial wave amplitude measured from the plasma center. The mode

number is determined by measuring the phase shif t bei tween Langmuir probes

displaced azimuthally by 90*	 intervals.	 rranges from 1.4 to 1.8 cm. A
0

•	 typical	 wave profile	 is shown	 In Figure 2 (inner wave profile 	 (1)).

Measurement of the profile width shows that k	 Nk	 is approxi -
r	 X

20
:=Itmft-m^m'j 	 1-0-
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mately equal to k 
ID

	 ky ). in addi tion we note that the behavior- of

the excited waves in tho stable regime goes over smoothly to that in

the unstable regime with regard to these ^ cha racter i st i cs .

The outer wave profile (2) displayed in Figure 7 is the temper-

ature gradient drift wave mentioned In section 3. We observe that this

oscillation poss ss s charac-1-6ristics, with respect to frequency and

propagation properties . , which are very similar to those of the density

gradient drift wave (1). Consequently positive identification of the

latter can only result if the regimes where the two waves peak

(nolno•v icm-I for (1) and T'/T ^ Icm -1 for (2)) are isolated from

each other.

Measurement of the density (n I / o ) and potential (e ¢,/kT) per-

01
	 demonstrates that these two quantities are equal within 10%

over the entire wave profi le. The measurements of e ^,AT are taken

with a Langmuir probe across a 30 megohm resistor to insure that the

probe is floati ng. Additionally we observe that the maximum amplitude

of the driven perturbation is less than 5p which is well within the

linear regime. This condition is maintained throughout the experiment.
I

Finally we wish to comment on the positioning of the excitation

' grid. We observe that maximum response is observed when the grid is at

ro . Moving it on either side of ro red6ces the amplitude of the re--

ceived signal. In addition moving the position of the exciter in the

axial or azimuthal directions  at a fixed ra` does not change the char

l 

6

acteristi'cs of the received signal. To check on any pos.^ible stabilizing
I 	 1
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and potential profiles also show no detectable effects due to the pre-

sence of the grid.

B.	 Axial Wavelength

The axial wavelength of the drift wave is measured by moving a

Langmuir probe parallel to the magnetic field at a fixed position

In the r-E) plane of the plasma. Since the drift wave is a standing

wave in the axial direction the amplitude profile along z indicates

the axial wavelength, X 
z
o In this connection we observe no phase

shift as we move along z verifying the standing wave nature. The re-	 I

suits for two different plasma potential configurations are shown in

Figure 5. The end plates are adjusted for equal temperatures so that

negligible axial current flows. The plasma potential, U, is calculated

in terms of the density and temperature according to

191 M
CL o 0- 	 + is

where RIM is the Richardson--Dushman equation. We observe a flat_ z..

tening of the axial wave profile and consequently an increase in 7tZ

as we go from U	 -0.05 volts (electron rich sheaths) to U 	 +0.50

volts (ion rich sheaths). These values of X  can be compared to the

theoretically predicted values obtained from Eq. (I3). Using the values	
1

of U, g i von we find XZ = 2L (L is the length of the plasma column) for
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using the bellows assembly described In section 3, L is changed from

	

	 f
t

®	 60 cm to 46 cm. For the case of electron rich sheaths 	 observe a

change in the axial profile as displayed in Figure 6. Agai;i the theo-

reti r•a I curves are calculated from Eq. (13) and the agreeme ,t• between

,theory and experiment points out the dependence of k Z on L.
ffi,

C. Variation of the Magnetic Field

Verification of the linear dispersion relation, Eq. (7) ., is

performed by measuring the real frequency and growth rate as a function

of both the magnetic field and plasma column 	 length.	 in this part vie

examine the variation with the magnetic field.

The real	 frequency is easily measured by observing the resonant

frequencies when exciting the drift !eaves. We have measured this fre-

quency as a function of magnetic field. 	 Results are displayed	 in Figw-

urc 7 for the m = 1, 2, and 3 modes. 	 in order to make the results

meaningful with respect to the dispersion relation,	 Eq.	 (7), we sub--

tract t-lie Doppler frequency due to the Eor x B drift from the date:.

The Dopplerer frequency is expressed as

I

(21)

ro the position of the wave maximum, 	 is 1.-4 cm and Eor_, the zero order

1
1

radial	 electric field,.	 is -0.125 v/cm. Quantitative comparison between

experiment and theory is made by solving Eq.	 (7) numerically for WR

as a function of B with r	 = 1.4 &, T	 2200°K, n	 = 6,7x10 10 cm-3'
e	 0I

n 10/n0 (n' is the density gradient at ro) = -0.8 cm I , and kz - Ir/I.8L-

where L	 60 cm.	 k Z is determined from Eq.	 (13);. From Figure 7 we

observe two pr i nci pa j areas of agreement between the theory and exper-

I^
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meat. (1) The functional depondonce of wl,, on 5 agrees with 
the 

pro-

dicted results. (2) The magnitude of the theoretical and experimental

values agree within 25% In most cases. This is within the errors accum-

ulated in measuring Eor and n'/no .In connection with this the value
0

of Eor chosen for the calculation of the Doppler frequency, -0.125 v/cm,,

Is the avorage of the measured values of Eor determined from the float-

ing potential profiles. The same criteria is applied to no/n o where the

-value of -0.8 cm 1 Is chosen from density profile measurements. As a

further comment on the real frequency we also observe that its variation

with magnetic field in the unstable regime is very similar to that for the

externally driven modes just discussed. Because c^,AT > 0.1 and non-lin-

ear effects are present no attempt to compare the results to the linear

theory is made. However it appears, qualitatively at least, that no sig-

nificant changes in the behavior ofw
R vs. B take place between the linear,

stable regime and this weakly non-linear (0.1< e ^ I /RT <0.2) unstable case.

We next measure the linear growth rate a s a function 
of 

B. After

the excitation signal is shut off the received signal damps out as

observed in Figure 3. The charactistic damping rate (to	 of such a

signal is a combination of the end plate damping rate ( wD and the lin-

ear growth rate (w9). This can be expressed as
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value of I.4xl03 sec-1 for wp . As was discussed in section 2, w p is

Independent of magnetic field. Therefore changes in ca l as B varies wi l l

be solely due to w
9

. Using this fact and substituting the value of wn

Into Eq. (22) we plot the experimental values of wg as a function of

B for the m), 2, and 3 modes in Figure 8. The theoretical curves	
s

are calculated from Eq (7) based on the parameters given for the real

frequency above. We observe the following areas of agreement. (1) The

functional dependence of wg on B Is that predicted. (2) The magnitude

of the theoretical and experimental values agree within 25% for the m = 2

and m = 2 modes for most of the data.	 (3) The field at which wg = 0
1

(cutoff field)	 for the m	 3 mode, B -	 1750 gauss,	 is within	 10% of

the theoretically predicted value. Extrapolating the results for the

m = 2 mode to wg = 0 gives a value of B at cutoff (1200 gauss) which

also  agrees w ithin 	 10%

. In connection with (1) we obse, ve that 
w 
	 increases with B for

m = 2 (1200-1500 gauss) and m = 3 (1700-2.100 gauss). 	 In this regime ^
11

viscous damping is important (Ekjpi + to/t^^ , 0.3) as d iscussed in
i

Yw1

section 2. These curves are well	 approximated,,by Eq. (12). For the other

cases viscosi ty is no longer dominant and we observe wg dec reas ing as

B increases. The variation of 
w 
	 with B approaches that given by Eq.`0 0).

With regard to (2) the errors in measuring k 	 and use of the rectangu lar
geometry approximation to the actual cylindrical geometry could ac-

count for the 25% discrepancy. Finally point (3)	 indicates clearly the

mode dependence of the cutoff field demonstrated in section 2. The

good agreement OvIOP between the experimental and theoretical values

f	 he cutoff field obtained 	 i n this experiment resul ts from (l) taking .
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end plate damping into account and (2) keeping the expressions 0 + kepi)

and (I - k1pI) in the dispersion relation, Eq. (7). P're'vious measure-

ments of the cutoff field were reported  which stated that the experi-

mentalI vaIues were about 50% higher than the theory predicted. Flowever

In this case neither of the two effects which wo considered were taken

into account in the computation o f the cutoff field. As a final comment

we note that the measured and computed values of w  for the in = I mode

disagree by about a factor of two. We have no satisfactory explanation

for this at this time. A possible source for this discrepancy is the

fact that kx, which is equal to ky , is also approximately equal to

no/no. Therefore the localization approximation used to neglect k x terms

i n the dispersion re lati on is not as valid as for the h igher modes.

A	 In connection with this Chen 
25 

has shown for drift waves in cylindrical

geometries excluding Ion viscosi ty that the growth rate when radial
A

dependency: (hence x ) is included is about three times as large as in

the case when radial dependence is neglected.

D. Variation of the Plasma Column Length

Measurement of wR as a function of ' p lasma column length is per-

formed by using the bellows assemb l y as described in section 3. The

results of this measurement are shown for an m 	 3 mode in Figure 9.	 T ^

The value of 
wR 

is p l otted after subtracting the Doppler frequency,

Eq. (20, with a value of Eor - -0.20 v/cm and ro	 1.8 cm. The fre-

i quency- is observed to decrease withth increasing L. This ref l ects the

effect of ion viscosity which results in w becoming a function of

kZ as seen in Eq. (8) and described in section 2. The theoretical curve

r	 is calculated from Eq. (7). We observe the following areas of agree-

71v

	

,	 .
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ment. M The functional variation of 'w on L is that predicted.

(2) The magnitude of the theoretical and experimental values of W
R

agree within 25%.

We next perform a moasuremont of w
9
 as a function of L. The pro-

codure Is to measure w and then determine w
D
 from Eq. (19) in order

to calculate w
9 

from Eq. (22). In this case, however, since w
D
 is a

function of L vie must determine w D at every value of L. The results

of such a measurement are displayed In Figure 9 for an m = 3 mode. We

observe that w is relatively independent of L. This is a consequence of

the viscous contribution to w
9 

discussed In section 2 and expressed In

Eq. (12). The net result is that the change in the measured net damping

rate (w I ) is due almost entirely to changes in w D& The theoretical

curve plotted in Figure 9 is calculated form Eq. (7). We obtain the

following areas of agreement. (1) The theoretical and experimental

values agree within 25%. (2) The relative Independence of w 
9 

as a

function of L is confirmed. (3) The dependence of end plate damping

on L Is demonstrated since the observed change in W (end plate damp-

Ing rate) over the range of L tested is within 15% of that calculated.

E. Phase Angle Measurement

As discussed in section 2 the phase angle (0) between ths , deni--'

sity perturbation and the potential perturbation is an Important par-

ameter since it determines the growth rate of the drift wave in the

non-viscous regime ([b + tll /tj, ],< 0.3). This a.n9le is measured as a

function of magnetic field and compared to the correspondinggrowth

rate. Previous measurements have been made of this angle for drift waves

in the unstable regime.
3
 However they have been made at only a single

q.

*WAS= "'iIii
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value of B and no correlation with the g ro;vith rate has born p rosentod .

The results of our mQadurements for an m = 2 mode in the regime where

viscosity is not dominant are displayed In Figure IQ. In this case the

growth rate is dependent principally on the phase ang!e as discussed

In section 2. In making the moasurements of the density porl"urbation

In order to determino the phase angle we must consider that the biased

probe Is collecting the entire perturbed flux which is

T1
^ n L°

V i th + noev i y

where v 	 is the perturbed Ion velocity and w ith is the ion thermal

velocity. Therefore the phase angle we measure is between J I /J o,

where Jo Nnoevith' and eWkT. The expression derived in Eq.	 (14)

accounts for only the first term in J
I
. A relation can be derived

between J /J o and e cpl AT by calculating v l from the perturbed ion

velocities obtained from the first order equations of motion and

il l /no from the continuity equations. From this the phase angle is

easily obtained	 and	 is given by

1	 b ( LU l -t' kY \to) t„(14)	 t anti^, 0 =	 '"'
-^	 tit (^ ^3/^'^wr^ ^ i^•^do

This is the angle actually measured in the experiment. However for our

experimental conditions the term t 0 (b) 3/2 (wR + k vp )	 is < 0.1 and
y

Eq.	 (14)'	 is very near ly the same as Eq.	 (14).	 I t is apparent, though,

that under conditions of	 large t,, and/or large k P i 
the contribution^. 

from the noev I term to the measured phase angle is significant and
1

must be included in the analysis. From Figure	 10 we see that the den r.

4
si ty perturbation (n l )	 leads the potential perturbation 	 and that ..

the growth rate decreases as the phase angle decreases as we vary the
e

J^

v	
v

h

V

.	 _	 __ Woe	 M; PIN

F
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magnetic field. The results are compared with the theoretical expros-

Sion for tang from Eq.., (14). The experimental values of w R 
are used

In the calculation. We observe that the functional dependence of 0

on B is that predicted and that the experimental and theoretical values

agree within 25% for most of the data points.

Observations of the phase angle as a function of B in the vis-

cous dominated range (Cb	 tip /tom > 0.3) show two different types of

- 3
behavior. For low densities, (<5x10

10
 cm	 we observe that both 0

and W
9 

increase in magnitude with Increasing B as displayed in Figure

-
11. For densities > 5xlO10
	 3
cm	 no change in 0 Is detectable as we

vary B even though w
9
 increases with B. In the first case the observed

behavior Is noll the predicted by the theory and tile physical picture

presented in Bert on 2. The reason for the discrepancy is not under-

stood at this time. In the second case, that of densities greater than

5xl0 
10 

cm-3 , the results agree qua li tat ively with those predicted In

that we expect the increasing ion inertia contribution to tanO to near-

ly balance -the decreasing FLR portion resulting In a slow-ly decreasing

phase angle.



V. CONCLUSIONS

In this work we have presented a study of the linear charactorl's-

tics of drift  waves. We find that the method of extorrin I excitation of

drift waves by a grid provides a powerful tool 
in 

examining 
the 

linear

behavior of drift waves just 
as 

In the case of Ion acoustic,,. waves. 15

In this manner 
we 

are able to lirtilt our selves to small amplitude

(0 
1 
AT < 0.1) oscillations In order to investigate 

the 
I Inear theory of

,these Waves.

Our work has demonstrated the following:

1) The axial wavelength of drift waves is found to depend on the

sheath conditions at the cathodes and on the- length of plasma column.

2) End plate damping has i signigicant influence on the stability

of drift waves In a bounded system. When the sheaths at the cathode are

ion rich the recombination loss of the perturbation at the cathodes is

sufficient to damp out the drift wave. The damping rate is reduced con-

siderably when electron sheaths are present.

3) The behavior of the real and imajinary frequencies of the drift

wave as a function of the magnetic field and plasma column length is

shown to obey the linear dispersion relation including ion viscosity

and finite Larmor radius and when the effects of and plate damping are
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FIGURE CAPTIONS
3	 '

i. Schematic of the rectangular geometry for the drift wave. We have 	 j

displayed the zero order quantities and the perpendicular (y) pertur--

bation. Also shown is a schematic of the drift gave in the cylindrical

geometry giving the axial (z) perturbetion and showing the perpen-

dicular and axial propagation.

2. Radial amplitude profiles showing the separation of the density

gradient drift wave (1) and the edge oscillation (2) relative to the

density and floating potential profiles and the tungsten ionizer plate 	 =

(5.8 cm in diameter). The vertical scale is arbitrary. The peak densi ty 	
F

N
	

Is IxIO I( cm
-
 and n

I
A for the drift wave is < 0.07. Eor (the slope	 k

of potential profile at ro ) is -0..15 v/cm where ro = 1.3 cm. Potassium

plasma, T	 2200°K.

3. Schematic of the e; per i menta l set-=up. The excitation signal can

be fed In steady state or ga't'ed through the tone burst generator. The

signals can be received through either the ion saturation bias net-

work or the high frequency circuit for floating potential flucuations.

it	
4. The upper trace is the gated excitation signal. The uertical

scale is 2v/cm for this trace. The lover trace is the received signal

ahowing the characterisiic damping when the gate of the tone burst

generator is closed. The vertical scale for this trace is Iv/cm. The

value of n1  < 0.07. The horizontal scale is 1.0 msec/cm

5. Wave amplitude as a function of axial distance for double ended
	

hf

,i	 operation of the Q-device. The upper curve is for ion rich sheaths

p
r

	 3

7.n: 	 '	 ,.	 -	 _	
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giving an axial wavelength of about AL. The lower curve is for electron

rich sheaths givi =ng an axial wavelength of 2L The solid lines are the

theoretical curves proportiona l to cos(kzz) where k  is determined f rom

Eq. (13).

6. Wave amplitude profiles as a function of axial distance for two

values of L. Sheaths are electron rich so that the axial wavelength

is approximately 2L. The measurements extend from the column center to

a value of z close to one of the plates. The upper curve is for a

column length of 60 cm and the bottom curve for L = 46 cm. The solid

lines are the theoretical curves which are proportional to cos(kzz).

k  is determined from Eq. (13).

7. Real frequency of the externally excited drift wave as a function

of magnetic field for the m 	 1, 2, and 3 modes. e^,/kT < 0.05. The
f

Doppler frequency due to the zero order electr ic field has been sub-

tracted from the measured frequencies. Eor = -0.125 v/cm at r  = 1.4 cm

for this case. The solid lines are the theoreti ca l curves calculated

from Eq (7) . Potassium plasma, T	 2200°K.

8. Growth rate of the externall y excited drift wave as a function of

the magnetic field for the m	 I, 2, and ' 3 modes. e^
I
 /kT < 0.05. The

growth rates (to ) plotted  are obtained from the measured damping ( wj )

by taking into account the end pl ate damping (w p), ca lculated from

Eq. (19),	 according to the relation wg = wD -- w1 . The solid	 lines are

the theoretical curves calculated from Eq.	 (7). Potassium plasma,'
{

T = 2200°K.

-

o
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9. Real frequency (a) and growth rate (b) of the externally ex-

cited drift wave as a function of column length for the m = 3 mode.

e^ I AT < 0.05. (a) The Doppler frequency has been subtracted out from

the measured frequencies. In this case 
Eor 

= -0.2 vlcm at r  = 1.8 cm.

(b) The measured damping has been adjusted for end plate damping be--

fore being plotted. ob is calculated from Eq. (19) for each value of

L in this case. The solid lines are the theoretical curves calculated

from Eq. M. Potassium plasma, T = 2200°K.

W. Density-potential f l ucuat i on phase angle and growth rate for the

externally excited drift wave as a function of magnetic field. A neg-

ative phase angle means that n I	 leads c , . e ^, AT < 0.05. The curves

are for an m = 2 mode. Because Eb + t1 1 /ty] < 0.3 we are in the regime

where ion viscosity is no longer dominant and the curves show the correl-

ation between the growth rate and the phase angle as a function of field.

The solid	 lines are the theoretical curves. For the growth rate they are

calculated from Eq.	 (7). For the phase angle they are calcul ated from

Eq.	 (14). Potassium plasma, T = 2200°K,

11.	 Density-potential	 flucuation phase angle and growth rate for the

externally excited drift wave as a function of magnetic fiel d. A nega

tive.phase angle means that n
I	

leads	 1 . e^ AT <'0.05. Since Eb + tir/tL

> 0.4 we are within the viscous dominated regime as indicated by the

behavior of ^. The correlation between cog and the phase angle is not

4.
predicted by the theory (Eq. 	 (14)) andremains unresolved at this time.

Potassium plasma, T = 2200°K.
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.	 APPENDIX

In this appendix vie present the details of 1`he calcul at ion of the

of the dispersion relation (Eq. 7) The assumptions used are those listed

in the text. In thi s sect i on we solve the equations of motion for the

Ions inzero and first order and obtain the first order Iran continuity equa-

tion. The same procedure is followed for the electrons. With the assump-

Pion of quasi-neutrality the continuity equations for the two species are

combined to yield the dispersion relation relating w and k. This equation

Is then solved for several limiting cases.

Since only ion motion perpendicular to B occurs we can wri te down

the equation of motion for ions as

V,:V_,)	 r
1

`	 p is the scalar pressure equa l to nkT,	 is the pressure tensor and

Is a first order quantity, and FF is a generalized gravitational force.	 {

The l atter is usually the representation in rectangular geometry of the

centrit,uga i force aris ing from an ExB rotation of a cylindrical plasma

due to a zero order radial electric field. The effects of this force on

the growth rate and real frequency are small compared to the remaining

terms for our experimental conditions so this force is neglected. As a

consequence the on ly effect a zero order electric field has is to add a

Doppler shift to the real frequency. The Doppler frequency is subtracted

from the data and therefore we can sol ve the equations i n a reference

frame movingwith the FxB drift of the zero order electric field. The	 !i

Al

._	 t

E

-	 —	 ^X^ii a.^i^i ^	 1	 3^ tl^	 39a ...c '	 ^ ^.s.+une,n s	 ¢.	 •.•,:^,riicd^enddEdsn .t.^,



zero order steady state equation then becomes with v^. vv

(2)	 o T)	 0G

Since V no = dno/dx x and B = Bz, the only componont we have of (?:)

Is the x component. Therefore we solve for V
Qj.

to get

where v  is the electron diamagnetic drift velocity.

The first order motion is obtained by linearizing Eq. (I) with

v 
1

= v I + yo a n	 n I + no , and EC -© f Therefore Eq. ( l) becom es

a y + V
I - i7v^fi vp,^^

	

	 J._.^^ .h
-	

V K	 n,T
a	 ^	 'L	 M	 c	 rio 	 a-

(4

lion

after dividing by noM. This is simplified by using

V1 Y10

The terms v_ i • VVU -^ Vo • QIv ) can be written usi ng Eq. (3) and the assump _

tion 2) /fix {no/no ? = 0 as

A-^ D v y
(6)	 v©Y Cn	 0^ Y

F
r

Finally the expression for I is written to first order as



0
,,

A3

C xx KT	 Y
ClioS We

â y + v

vY .,^ â^

aY ax

cG l = I and cC 2 = 5/4 in the limit (vii/ c)24`! I which is experiment-

ally valid in our case. Substituting Eqs. (5), (6), and (7) into Eq. (4)

and taking the x and y components respectively produces

 K T

	

alf C r	 1^ ^2; [a-,

d vX	 I. t T v.. !.a a VX ^, a VY 	 k r a y	 ''`rY +
(s)	 a- --^ -^ a^^M	 n	 ao M a x	 aa 	 ^	 n	 Y	 ^	 y

k r v .	 x .i.	 -Y,;
^MWG 

M 
^a 2) x' ^ y^

for the x component and

Y—Y 
Ma.	 °^	 ` T	 a Y	 c	 ► 	 Y

Y,
^ ie1 40" Y10 a Y

kvj]	 K T Vii	 9	 n'V

+	 tv,k T v;^ c M	 CDY,), 
2 Y1

y

for the y component. Using the assumed periodic dependence of the per-

turbed quantities on these equations we get



A4

^z(W + ky V") vy - ~ Y Vj- 
,

Cif)
1, ^,,, 1, 	 )-Wj ^-%a.	 Y t	 Y	 ,	 ;, Lot, &4	 ak Y

where C i = v i th /W
 c the tan cyclotron radius with v I th = MT/W%/2 the

ion thermal ve locity. The fo l lowi ng quantiti es are defined for con-

venience;

.. .R.	 1^ v
UG

Vr) 
	

^..'	 I'Y vp
F ^ ^ 

Vii' ►
 +^ ^^ ^

B

Solving Eqs. (10) and (1I) for vX and vy gives

y	 _... ZL.......	 ^.., C	 4	 }
-•t- ^, C. tea	 G`a^	 (1	 G

and

V,	
tKillV^' D)

G c ^ ^^	 u'c	 (^ + c era` t

1

4W



A5

a ^,
a+	 ..

Linearizing and Fourier analyzing yields

(14)	 .,Z. , v	 x x	 Y Y	 .

Substituti ng Eqs. ( 1 2) and (13) Into En. (14) g ives us

Yi `WC.a
( 1-5)	

i	 V	
r

For the case kX > ntlno and 
	
-e LO 

c 
the expressions fo r C an d D

f

can be approximatod as t

V
(yU 	 ^Y a

(I C^ )

G—

	

..	 6 v.a

and the last term of Eq. (I5) can he dropped so that this equati on is now

or upon rearranging terms

( 1 7) W Yi	 y G YZ	 ^'	 '^	 ti`^o	 ',	 o	 k	 ^.
1



A6

(19)	 Q= ne E I1' V"P—nM":))i,VII e

for motion parallel to B. u of

The zero order motion from Eq.

Y1 n V P,

e
since ^^ no dno/dx x, Thus

I s the electron--ion collision frequ ncy.

(l8) is

(20)V	 - c kT V :, V
ID	oyo	 C B ho

Since  we assume E 11 d /dz = 0 for zero order quantities, v11 o = 0.

For the first order motion we linear i ze Eqs. (18) and (19) as in the

case of the ions The x and y components are respectively

xY1.a (^jlc ) Z 0
c

and

	

Y1 C 0 
C^ I	 VXc Z	

x -V	
^

Y1
C9 Y	 c.	 al V1d

Again Fourier analyzing and so-wing for vex and vye we obtain

L
:	 k^ V 'Lh	 Y1 ^	 611

( 2 1) yx t; .^....	 --
,^	 n a	 k1T

and

(22) yt Yto	 VAC rF

^	 For the z	 p` component q	 9) to obtain1we solve E	 (.

^^ ^A
1 , T

where veth	 ( kT/me ) the electron	 ^^A rma l	 velocity. The	 linearized
}

a,{
,f

P



i /
electron  continuity equation Is

	

, i Q V1 I C .^ ^ ( 
a	 1

C Y1 0 	h o

	

there JQ c	 W . kYva , Substituting Eqs. (21), (22), and (23) Into

Eq. (24) gives us

	

o	 Y	 ►cT,	 lY,n
	 K^e

or upon rearranging terns

	

V q t	 z	 ^
(26	 c a rn ^., 1 y ^ 	 1	 a

)	 v1 o	 K `I"	 ^^	 n fl	 K T

where t« I = k2 
vath^^^ at'

We can now obtain the di spersion rot ation by so lving Eas . (15) o r

(17) and (25) or (26') for nl/nA and nle/no respectively and equating the

two expresseons. We solve Eq. (25) for nle/n0 in terms of ^ (=eO/kT	 n1/no)

and substitute this expression into Eq . (15) First  of all CZ e = W -- kyvp M

	

.^2. -2kYvp s Ince J;I	 w + kyVp. Therefore Eq . (25) becomes	 -

Y 	 -r	 46	 1^t	 1

	

n o	 ^	 ^ y	 ^r	 u	 C T

or rearranging and solving for n le/no we gat

Vp
h e	

SL <,. ;Li L'f

Substituting into Eq. (15) yields

	

L6+ i t^`V'c j 4 S^	 +

f{
(27) .{ 

i z l 1.^C wG .^.

	

z1,	 COIL	 x'11

tFt

i

t
i

,r v^ p



A
I

tr
i

This complicated dispersion relation Is greatly simplified by using the	 ^	 1

assumpt ions t y  /w c ) , (kx 1 . no/no ) < I . This has a I 1 ready bockn done

In obtaining Fq,(17). Therefore by combining Eqs. (17) and (26) as we

,just did for Eq s " (15) and (25) we got the dispersion  reIFation presented

in the text,

v	 ^.	 I	 -Zj	 -11,01
i	 - z ^"V„ I (I- LLB

(28)	 w' ''^
	 s

_. C1
a

We can solve this equation in several limits by expanding the square

rood`. F I rst,

^k'vb .t,	 ^t

'	 (	

b	
VI.

11	 J.	 it a

or	 «

R11	 1

i-S

Factori ng out the real

^ Vn b

par*

I
}

^tl	 3

of the radical and assuming

Ai > ( kv Vh, "bi +



A

or agn i n with the assumpt ion wo can expand the squaro roots to obtain

b u3	 " *
	 '%-.y 

Vp b ^d"	
1i 

I)	 ^. l i	 »,s .v	 x

(29)

V W 
f 

^4 V p	 .^ i>	 lo \ ^-^  i,,°+1 t,)
 ^' 	1 ♦ 	 11 IL

•
The assumption i mpli es  that (i, ,,) 2> ( kyvpb) 2 . S i nco we a re to obta in

oxpressions vaI id for t , i-<4 k
y 

vp and %o-),%o-), yk v  this necessarily limits

the va i ►aa of b so that (t,j) - *> (kyvDb) 2 . Our experi mental cond itions

shot that •t•,, i- kyvp so that the assumpt i on a i I ow I ng th© oxpans i on i s

quite vali d. We now can write down expressions foR- U3 R and w f t.-om Cq .

(29) as

b w - .^ ICy Vo

	
( 3 0- J-

+	 V	 4L-it
	 -^

or ,o

`r 6	 ^.

(30) p	 ^i r

and

2 60
86

!,
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vsy G	
J	 a,'

f

and no stabiliz i ng effect is pred icted For small tai such that

t,^ ( ?> kyva and therefore t°,, 44 tl , the terms % /t I n Eq. (31) can be

dropped. I f we further make the assumption b 44 1 1-14n Eq. (31) can

be written as	 '£

(32)	 4^^	 a ^^ y ^^.^ !^	 Iy	 ^^	 6 ( kvv %14 11

+	 E

Stabi l ity is ach ieved when Cb( kyvD ) tl,D	 ty l . F inally in the case of

large tit such that t 01 1 44..kyvp the last term in Eq. (31) can be neglected
r

and the expression for Wg becomes

tit

(I + b-f

.	 C	 ,

.c
f

and stability comes about when t, y. = ti ( I -b) 

r

1
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