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Drift Waves in the Linear Regime
R. E. Rowberg and A. Y, Wong

Department of Physics, University of California, Los Angeles, California

ABSTRACT

A method of exfetnal excitation of density gradient drift waves in
a stable, collision dominated plasma is presented whereby the |inear
theory of drif+ waves is verified. The procedure permits limitation of
the berTurbaTion amp | i tfude such ThaT'e¢l/kT'< 0.!. This represents a
marked advance in the study of drift waves since non-)inear saturation
effects present in all previous experiments on these waves are avolded.
The driven oscillations are coherent, nearly sinuéoidal modes on which V
measurements of w aHd k as a function of the plasma’paramefers are
made. In this manner the linear d}spersion reta?fon‘derived from the
fﬁuid equa?fens is verified‘demonSTraTing fhe strong stabilizing effect
o}‘Transverse diffusion resulting from ion viscosity. In connection with
this an additional damping process resulting from ion loss at the
cathodes is introduced whereby complete sfébiliza?ion of Therplasmé to
drift waves is pbssible. Next, the dependence of the growth rate on the
pﬁase angle béfween the density and potential perturbation is shown in
the regime where viscous damping is not dominant. Finally verification
of the dependence of the axiél wavelength on the shea#hagondtfions at

the plasma cathode bdundary and on the length of the plasma column

- is demonstrated,




I. INTRODUCTION

A. Scope
In this work we report on a method of investigating the |inear
behavior of drift waves in a collision dominated plasma. Taking ad-

vantage of the fact that drift waves can be stabilized In a bounded

i

plasma such as in a Q-device, we are able to externally excite these

L

osclllations and study thelr characteristics. The method on external
excitation has the advantage that we are able to look at small ampli-
ed,
iude waves ( et
effect on the behavior of these osciilations. This s not the case

< 0.1) yherein non-linear processes have a negligible

In the unstable regime where all previous investigations of drift waves

have taken place. Consequently, our method of study represents a mark-

ed advance in analyzing the behavior of these waves.

B. Basic Description of Driff Waves

In as Inhomogeneous p!aema immersed inta magnetic field, B, there
are waves assecia*ed with densify and temperature gradients. Such waves
are low frequency, elecfroq+a1|c oscullafuons which propagate almost
perpendicular to both B and The grad'enTS. This perpendicular -propa~
gation is in the direcfaon of the electron diamagnetic drift and the
phase velocify of the wave Is approx!ma1e|y that of this drift. These
"drift+" waves also propagate in the axial dlrec1|onv(parallel to B)

”

and possess a very long longitudinal wavelength, A.L . For a plasma

bounded in the axial direcfion these oscillations reflect off the ends

and form standing waveé»ﬁifh the boundary COndifions determining Az,
In a plasma dominated by collisions, the drift ang;js normally un-

s#abfe as a result of finite fon inertia, finite Larmor radius effects,

~and eieefron-Ion coliisions.there three effects combine with the zero
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~drift waves are present,

3

order density gradient to cause any inftial drift wave-like perfur-
bation to grow in amplitude. In addition there are damping processes
which can stabilize the plasma. One stich mechanism Is fon-lon collisions
which diffuses the density perturbation transverse to 8; Another damp-
Ing mechanism which can exist occurs when the plasma Is bounded axially
such as In a Q-device. This process is due to fon loss at these bounding
end plates. Under certaln conditions, to be discussed below, these fwo
meﬁhanisms can combine to stabilize the plasma against drift waves. 1+
Is in this regime that the experiment described below is performed.
Drift waves belong to a class of microinstabilities which have
received a great deal of attention in recent years. This s because
they can occur in all plasmas which are not in"equilibrium as is the
case with confined plasmas. The drift instability in particular is a
result of the density gradient inherent to a confined plasma. Of further
dmportance Is that fhis instabillty Is suspected of being one‘of the
mechanisms responsib!e for the anomalous diffusion observed in con-
trolled fusion devices, e.g. stellerator pumpou?.' The reason for this
is that there Is a net radial transport of particles ouTwérd arising
from the fluctuating electric field'of'ﬂﬁgfabla drift waves. Diffusion
rates calculated from diffusion processes resulting from these waves

1,2,3

are much larger than those of classical diffusion. In addition

recent experiments have shown that enhanced diffusion takes place when
314 For these reasons a basic understanding of

the drift wave is eséen+ia| to the problem of plasma confinement.

 C. Historical Davelopment

- Early theoretical work on driﬁj waves dealt with the collision-

,.

p




less (electron-ion collisions neglected) limi+. Such work is described
in articles by Rudakov and Sagdeev (1960),5 Kadometsev and Timofeev
(1962)® and Rosenbluth and Krall (l963):7;§ These works involved drift
Instabilities excited by density and temperature gradients. The first
work on collisional plasmas was performed by Sagdeev and Moiseev (1963)°

and Chen (1964 and 1965).'°

Their ftreatment consisted of solving the
fluid equations for driff waves driven by density gradients. Coppi
(I967)'| extended this work by including fon-ion cotlisions demonstrat-
ing that such collisions have a stabilizing effect on the drift wave.
Several experimental observations of drift wave like oscillations
in thermally ionized Cs or K plasmas were made by D'Angelo and Motley

13 2nd Buchelnikova (1964)'4 among others.

(1963),"'2 Lashinsky (1964))
’ However while these waves had characteristics In common Wifh those pre-
dicted for dénsiTy gradient difift+ waves, Hendel3 haé pointed out +Ha+‘
‘certain discrepancies appear in these observations which make identifi-
cation of these oscillations as This'fype of drff+ wave difficult. The
firs+ positive identification of density gradient dfif+ waQes was made
by Hendei, Chu and Poletzer (1967).° Their work verified the theoretical
work of Coppi reqardlng The sfabillzafion of drift waves by ion viscosity. ////
The experiment to be described in ?hia paper also makes positive
~ ldentification of the density gradient drift wave and demonstrates
the impcrfaﬁf contribution of ion viécostfy. However, unlike The exper-
iménts just described which involved ﬁnsfable drift waves and conse-
quently non-linear pfocesses; We are~abfe~fo perform our experiment in
~the linear regime by use of the technique of external exc%fafion‘of these

oscillations which allows us to limit the perturbation amplitude to

| Q¢%/k1~ & 0.1, Ve can therefore use this procedure for the verification
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of Thé linear dispersion relation as In the case of fon acoustic waves.'s
The principa! points checked for the drift waves in this manner are the
real and imaginary frequencies, the phase angle between the density and
pdfen?ial perturbations, and the axlal wavelength. Similar excitation

16 for the invés—

techniques have also been used by Hai and VWong (1968)
tigation of large amplitude drift waves,

. In section Il we present the linear the theory of drift waves
deriving a dispersion relation and expressions for the real and Imagin-
ary frequencies, We then obtain as expression for the phase angle between
the density and potential perturbations. Finally we derive an expression
for end plate damping based on ion recombination at the cathodes. This
shows that under certaln experimental conditions end plate dampling can
stabilize the drift wave. Section |l contains a description of the ex-

perimental apparatus and procedure. Finally in Section IV we presént the

experimental results and compare these results to those theoretically

predicted.

S




11, THEORY

We wish to calculate a dispersion relation for the density gra-

dient drift wave., Following the procedure of Chen'o

3

and Hendel, Chu,
and Politzer” we solve the linearized fluld equations in a rectangular
gecmetry for a magnetically confined, Inhomogencous plasma, Such a sys-
tem is displayed in Figure 1. We then obtain expresstons for the axial
wavelength of the drift wave as a function of plasma parameters, the
phase angle between the density and potential perturbations, and the
damping ralte due Yo fon loss at the end plafes.

In order to perform the calculation we make the following agsump-
tions:
(1). We may use the fluild mqua+icns stncewd;ﬂéccdkpéewhere Ve, Is the

electron-ion collision frequency, o, Is the lon cycletron fre-

quency , and QJ is the drifl wave frequency.

. . : 2
(). PIBET | o that £, ==V &, . Here n_ KT and B/gq are

B'l.
the thermal and magnefié energles and §4 is the perturbed elec-

tric field. n_, T, and B are the zero order density, temperature,
and magnetic field.

(3). The axial magné?ic field (along z) Is uniform and constant,

(4).  Axial fon motion and varlation are negleéféd since %i>;gvifh

where v . Is the lfon thermal velocity.

(5). Electron inertia is neglected.

6. k; , k, << kpy so that ve may assume quasi-neutrality. k, , k

z"

and kD are the perpendicular (to B), parallel, and Debeye wave

numbers, >

(7). There is a zero density gradient in the negative x direction

e




(Figure |) (jx ) and -},— ‘ﬁ‘; is constant,

(8). All first order quan?i*(es vary as exp[~1(w+ -kxx«kyy~kzz)3.
This implies that &x:b né/no, the density gradient scale length,
- so that the wave Is localizer in the x dircction.
(9). %z, , %i(.c Vetp SO that the temperature is constant. In addition
T Is the same for both lons and electrons, v . = KT/m,, the

electron thermal velocity,

The fluid.equations for our system can be written down as followz:

h Nn(g%*wx‘i’x) “‘i[EJ.” y:} Vip-Wl =0

tor electrons (g=-e, M=0) and ilons (q=+e) perpendicular to the magnetic

field,
(2) 0= ne E; +V, p+ imev v,

for electrons parallel to B, and

the continuity equaiion. n and v are equal to n +n  and VitV respective~ ///

ly where the subscript | indicates perturbed quantities and o Indicates
; zero order quantities, p is the scalar pressure and is equal to nkT, I

Is the pressure tensor (ions only), and Vg Is the electron-ton collis-

fon frequency. For the zero order steady state motion Eq. (1) is solved

to give

m

Vv,

KT
- 8 v

i 1o dve_ _
Voyc = e N, Ax T v")'

(4)

LI Y .
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the elartron and fon diamagnotic drifts.

To solve for the first order motlon we linearize Eqs. (1) and (2)
using *he form of 7T gfven by Shkarofsky, Bernsieln, and Roblnson,'7
with the rlmplifica+ton3 that the collisional ‘ferm Is given byq n 1\4“§1 Yy,
and Eq. {4) for The zoru order velecity arlsing in the !I‘a-mL ternm,

Using the assumptions listed we solve for the first order velocities and
substitute them into the )inearized continuity equations for lons and
electrons. Making the approximations (‘kbqu) << | and wave localiza-
tion In the x direction the terms Involving k (nl/n.) and (Vi) can

be dropped. The approximations are valld experimentally although the lo-
calization condition holds well only for mode number 2 2. As a result '
of this procedure we obtain

n ‘4’ ed _L (no b\\_:-‘
5y oy =KV T‘ +bw &+ bV S w2 g LT W )70

-

for lons, and
| - 1L (:1"? ‘5¢|) —

[] Sy ¢ pos —e
(6) &y Y\o k‘l oK w ty \Yo KV O

e S

,» where ki= y
-1

and fz 1Is the fon cyclotron radius, ITJ’) = #’k"%i ,‘where Vit

", | | | | ; N
s the fon-lon collislon frequency, and (+) ) ' = T2z Tetw[y: . Solving

for electrons, Here we have defined (. = (k._L Ql)z

Eqs. (5) and (6) for ni’/nO respectively and equating givés us the dis-

persion relation for collisional drift waves. This is

| x | ‘ 1
(- w'b + w{b ky\/p-kz(“((-‘ )4 ] zk,\/[ (1-6)- l]

2
l‘t’o




This equation is identical fo Tthat derived by DUpree2 using a kinectic
approach and nrearly the same as the one derived by Hendel, Chu, -and

Pol i+zer,” Further in the limit f>e0and be< | Eq. (7) redUCesf to that
obtained by chen.'° Eq. (7) is in general solved numerica!ly; However

i

by expanding the square root in the limi+ b2<< | and +"'\ << kva (the

latter condition allows us to drop the last term in Eq. (7)) we can
obtain approximate forms for the real frequency () and growth rate

(e g ) vwhich demonstrates the physics involved. These are

t
kyvq[l—' b - I.'l‘ ]

o E\l |
[.l + b+ txi}

20w by T J%Il
w _ -
(9) 4 [I-l- L+ %l‘]s

In the limit b <& | and 1,=2¢0 we recover the expressions derived by

(8) w

i

i

-

Chen'o

2 (] .
(10) Wq = 2(KyVp) by, wes=lgy, .

In Thié limit the growth rate is due to a phase shift between the den-
sity and potential perTurbaTicwﬂoThis puts a component of the first
erder lfon motion in +he X direcf?oﬁ in phase with the density perturba-
tion causing n to increase in magnitude. 1f we’nﬁw infroduce‘ion vis-
cosity +hrough”fihi+e Larmor radiu§ (FLR),effecfs and ion-fon col-
lisions (i.e. keeping terms involving b and +; ). a stabitizing mechan-

' 3 | ' )
ism Is provided which permits Wy to become 4« 0. This is a result of
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diffusion across (k_l)"l generated by The viscous forges arising from FLR
and fon-fon collisions, Suéh diffusion causes the wave 1o diminish In amp-
I1tude. Eq.(9) shows that stabilization (00g=0) occurs when f, = 14 (1-b),
t, is the time 1t takes the fons to diffuse across (ki)'l by way of lon~fon
collisions. The I-b correction means that +the FLR reduces the distance and
therefore the effective time required for the viscous diffusion to take
place. This correction arises from the terms (l+b) and (1-b) In the disper-
sion relation, Eq.(7). Similar terms are present in the dispersion relation
derived by Hendel, Chu and PolszerS but were not considered in the stab-
ility analysis. The significance of 1, is that it Is the time required
for the perturbed electron fluid fo expand along the field lines against
electron-ion collisions over a distance (kz)fiﬂthereby establishing the
perturbed potential, ¢,. ¢, in turn generates the x motion of fons neces-
sary for the wave 1o propaga+e and grow. Therefore stability is achleved
if the tronsverse diffusion time due to FLR and fon-ion collisions is
;qual to or less than the electron expansion time. This sifuation results
in a decayed perturbation before 45 can be set-up. As we increase the mag-
netic field from the stability point, 1, (I~b) becomes greater than t, and
the growth rate is positive and Increasing. The latter is a result of the
Increase in the term In Eq.(9) containing viscous effects, tl-b~1h/ﬁ_],
being dominant over the decrease in The portion of uag (Eq.(9}) resulting
from the ny - ¢,phase shift (Eq.(10)). The approximate range of values of
the viscous term where this takes place is 0_‘5}..EI--b'--1“‘,l /1t 1£0.5. Beyond
- this the portion of (*)g due to the phase shift becomes dominant and Lg)g
decreases’wifh increasing B, Therefore the growth rate shows a maximum at

some intermediate value of B.

 Stabilization also occurs at very small values of i (ﬂ};'\)} kva)

¥

. | even though t,<< tl(l-b).,ln this case a small 1, means a small n - ¢,
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phase angle and a small resultant growth mechanism. 0 If we decrease

t  for a fixed value of '+ ;, a point will be reached where the growth
rate due fo the the ny- ¢,phase angle (Eq. (10)) becomes less than the
transverse diffusion rate due to ion viscosity and the wave damps ou+.3
This process can be expressed quantitatively by keeping the term 2/t t,
in Eq. (7) and solving this equation in the limit b <<:l and << t, .

The approximate growth rate becomes'o

(yy Wy = 2 (lyvp)*bt,

Thereforewy=.0 when t, = [b(kyvo)zf” ]_'. The right side of this equai-
ion is just "I'he growth time due to the n|-¢‘ phase shift as seen from

Ed. (10). Since both sides of this expression vary as No? (8)4, and (m)4,
only kz remains as a variukle, In the experiment under study +, lies
‘between the limiting cases presented and consequenfly boTh stabilizing
processes musfwbe‘included. When this is done the approximate expression

for cdg becones

s

: . ;t:" Y )
2;(!(7\&))25’35“ (l b -g;.l.) - l NS
(12) We = L +, \= VRPN ]
: 3 (i+ oo+ ;_1) ] (14 b+ ..t.i) b (kyv,) t,,‘c% : ,

Thé presence of the last term in the léfge bracket of Eg. (12) means

+haT stability Is achieved (wWg= 0) for values of [I-b-%, /4 1> 0.
‘Moreover for the experimental condi?iops presenf.fhe viscous portfon

of Eq. (12) domi nates (i.e. g increases with increasing magnetic field)
for values of [1-b-1, /tL Jup to 0.7 which is a largér range than in‘

. Therefore we are in the viscous regime when

~ -1
the case where Ty €< kyvD




[bw" /t, 12 0.3 for our particular experiment.

With regard to kz we wish fo briefly discuss the effects of the
sheaths of a thermally jonized plasma at the cathodes of a Q-device
on determining the allowed values of kz. Chegshas shown that the sheath
structure has a pronounced effect oh the effective axial wavelength, Az;.
For electron rich sheaths, which are good conductors, the perturbation
Is zero al the sheath edge and )51-"4 2L where L Is the column length.
lon rich sheaths, on the other hand, provide an insulating boundary
which permits a finite perturbation ot the sheath~plasma boundary. There-
fore aaz>¢>2L in this case. Chen'® has derived an expression giving the

allowed values of k, based on the boundary and plasma conditions. This

Is S
. Ll v 4D
Z. K L_ L_ \) ’ __L. lee)z' |

(s Lton F-= 2¢ z,f:" 27 M) (explm SVl Uso

U is defined as the plasma potential with respect fo the grounded cathodes.
For U < 0 the sheaths are electron rich and for U > 0 they are ion
rich. Eq. (13) is experimentally verified in section 4.
We next comment on the phase angle ( & ) between the density (nj) v//
and potential ( ¢,) perturbatic:s. As has been stated this angle is re-~

10 We can derive

sponsible for the growth mechanism of the drift waves.
an expression for © from Eqs. (5) and (6). By subtracting Eq. (6) from
(5) and solving for n, in terms of ¢ , we can immediately write down

for tan © |
b lowg+ Kyvp) ty

1321Y!€3 =:‘-—

(14) J + LT bw,t,
-, , tJ. v '
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When t,—> the expresslion becomes
(15) Tan 0= - 2b(KV)E, =~ éiéo
where we have used Eq. (10) for Wy Ve note that in this |imi+t g
varies directly with © ., This Is demonstrared experimentally in sec-
tion 4,

In the viscous regime (b+t, /1 > 0.3), however, g no fonger

varies directly with @ . The principal confribution of fon viscosity
to tan @ Is to increase the value of g as B increases (Eq. (8)).

However both b and k v, decrease as B gets larger and therefore tan®

y D
will be decreasing for this case (Eq. (14)). The growth rate, on the®
other hand, Is increasing for the reasons discussed above (see Eq.(12)),
Therefore when ion viscosity dominates the behavior of the drift wave
the growth rate will increase even though € Is decreasing. i.e. the
principal effect of ion viscosity is to diffuse away the density per-
turbation and this process has |Ittle effect on the magnitude of the
phase angle.

The final point we wish to discuss is the phenomenon of end plate
damping.'8 This provides an additional damping mechanism indzpendent of
the drift wave processes just discussed, The damping is a result of lon
loss at the bounding cathodes due 1o recombinativn. Depending on the
sheath sfrucTureIaT these cathodes the loss rate can be large enough
to stabllize the drift wave. This will occur when the sheaths are fon

rich. Plasma ions-are thén able to easily escape to the cathodes but
are’hindered ffom're+urning by the potential barrier at the plasma-sheath
~ boundary. Such circumstances increases the probability of recombination,

Since recombined ions are replaced by ions formed from the neutral
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beam the Information contalned in the perturbation Is gradually lost,
If the rate of lon loss to the cathodes is greater than any drift wave
growth rate in the plasma, the plasma will be stable., A simple calcu-

tation derived in a manner suggested by Chen.9

will give us an expres-
sion for this damping rate.

The damping rate is defined as

L1 2N,

(16 W,, =
16) v N, ot

where N"= Ln, is the fotal number of perturbed fons per unit area in
the plasma column of length L and aﬁ%éai:is the rate at which these
fons are lost to the cathodes. For ifon rich sheaths a flux J‘ =
ZEnIViTh + "ovlz] is incident of the two cathodes. Vi, is the perturbed
ton velocity along z and Vith is the fon thermal velocity. Since

0

VizS< Vigy We neglect the term containing Vig® On the first bounce

off the cathode a fraction (1-p)J, is lost due fo recombination. p is

the probability of fonization and is defined as 20
| . LalT)
‘) F |+ LalT)

where La(T) = exp[(U,~U;)/KT] is the Langmuir-Saha equation. U, is the
work function of the cathode and UI is the ionization potential of the
néufrals. The current not recombined, pJ‘, Is reflected back toward the
plasma where a fraction J| p exptmeU/kT] (U>o , ion.sheafh) escapes the
sheath. The current not escaping (!~exp[~eU/kT])bJ'_is refléc+ed back to
the cathode whereupon a fraction (\~p)(l~exp[—eU/kT])pJ| }s lost. This

N,

process continues and 42t s Just the sum over all bounces of the

loss af‘each bounce. We than have




o

(18) o S
°t T I pu- exp [-eV(K7l)]

" where ve have assumed an Infinite number of bounces. This is justified

since the transit time for an fon in the sheath is several orders of mag-
nitude less than the drift wave growth time. Substituting Eqs. (17),

(18), and the expression for N' into Eq. (16) we obtain

2 Yi'ch |
L 1+ La(Mexpl®xt]

as the damping rate in the presence of ibn sheaths< A similar calcul-

(19) Wy =

-t

ation for electron rich sheaths yields

(20) wo= 2 Vegn

Vo __exeL®Td  yo
L I + La(m)

This expression is much smaller because of the expleU/KT] in the
numerator. Consequently end plate damping is largest in the case of
strong lon sheaths and smallest in the case of electron sheaths.

We note that Eq. (19) is insensitive to changes in the magnetic
field and inversly proportional to variation in the length of the plasma
column., In the experiment we necessarily measure the net damping of the
drift wave vhich is a combination of the linear growth rate and the end
plate damping. The net damping will vary through the growth rate only
since wy, does not change with field whereas variation of the column

length causes change in both the growth rate and end plate damping rate,

/
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111, « EXPERIMENTAL SET~UP

A. Apparatus

The experiment is performed on a Q-devlcezl

which produces a
quiescent, highly fonized (40-90%) K or Cs plasma., The plasma |s

formed by contact ionization of K or Cs atoms from an atomic beam

on the surface of a hot tungsten plate (v 2200°K) and thermionic emis-
sion of electrons by the plate. The plasma is in thermodynamic equili-
brium with the hot cathodes and is at a temperature of 0.2 ev. By
varying the flux in the atomic beam we can vary the plasma density from
107 to 10'? cm's. The plasma forms a cylindrical column with a diameter
of 5.8 cm and a nominal column length of 60 cm. It is radially confined
by an axial magnetic field which is continuously variable from 0 to
4200 gauss. In addition our machine has the unique feature that +the
length of the plasma column can be varied during operation. This is
accomp | ished by mounting the cathode assembly on vacuum sealed bellows
placed at the ends on the vacuum chamber. A total variation of the col-

umn length of 25 cm is possible with the bellows,

B. Preliminary Adjustments

Certain conditions must be achieved in order to perform the ex-
periment. First of all the effects of large temperature gradients
(T/T~ 1 em™ ') must be considered in performing this experiment., It is

necessary to separate the regions of large temperature and density

~gradient (T'/T %~ nl/n_ v en D in order to avoid confusion between

density gradien% drift waves and those excited by temperature gradients

“and their associated electric fields. In our experiment this is achiev-

=y 3y 2
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ed by using a large tungsten fonlzer plate (5.8 cm In diameter) so
that the neutral flux falls will Inside the edge of the plate. This
results In a small temperature gradient where the density gradient

Is large (l.e, T'/T» né/no¢ | cm"'

) and a separation of the two
types of oscillations as seen in Figure 2,

It 1s also necessary that the probes and cathodes be aligned re-
lative to the magnetic fleld so that the measurement of pesition de-
pendent quantities are accurate. By use of narrow electron and laser
beams we can achieve alignment to within one mm. This is verified by

our floating potential proflles which demonstrates that the measured’

profiles are within one mm of the diameter of the cathodes.

. e

o C. Experimental Procedure

The plasma is first stabilized against drift oscillations by a
combination of end plate damping and ion viscous damping. We are
then able to generate the drif+ wave by applying an external signal
at the appropriate frequency to-a grid 22 inserted radially Into the
plasma (Figure 3). The signal source Is an audio oscillator and the
signal amplitude of the driver is maintained so that e¢|/kT<O.|. This
allows us to remain in the linear regime. The excitation grid is
maintained at floating potential by inserting a capacitor (1.0uf)
befween the grid and the oscillator. This means that no steady state
current is drawn by the grid. The grid is a 1.5x!.5 cm wire mesh con-
structed of 0,0025 cm Ta wire with 20 |ines per cm; The wire mesh

requires no frame to keep it rigid thus minimizing the perturbing

P
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Influence on the plasmo. The plane of the grid is oriented parallel to
the magnetic fleld., The grid lead which also supports the wire mesh is
0.025 em Ta wire which Is electrostatically shielded so as to Insure
that excitation takes place only at the grid, The oscillation is ro-
ceived by a shielded Langmuir probe which is either biased at the fon
saturation polnt to observe Ny or floated to observe ¥ With regard

to the latter it is necessary to avold the Instrument phase shifits
brought about by the sitray capacitance of the receiving network and +he
load resistance (RL) of the. probe. Since the latter changes from 3%10°
ohms when the probe Is floating o 5x10° ohms when it is biased there will
be a large phase shift introduced between n; and ¢, by the receiving
networks. This is eliminated by using a "boo+é+rap" technique fo

23 Using a

’ eliminate the capacitive loading of the fioating probe.
unity galn operational amp!ifier with input impedence of 3xt07 ohms
and 2pf for the measurement of ¢., vie are able to reduce the system
phase shift between n | and ¢, to less than 1°.

The probe signal is observed on an oscilloscope and a wave ana-

"~ lyzer (Figure 3). By using the analyzer as the driving source in its
tracking generator mode, we can measure the frequency response dir-
ectly as we sweep the oscil]%for. This permits direct measurement
of the resonant or real frequency of the drift wave. In order to mea-
sure the imaginary frequency we insert a tone burst generator between’
the oscillator and the excitation grid (Figure 3). We set the gate of
the tone burst to allow enough oscillations through to establish a

steady state wave in the plasma., The driving signal is then removed

and the subsequent damping df the wave is observed on the scope

2 *
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(Figure 3), The damping rate measured In this manner Is a combination
of ‘the end plate domping and the lincar growth rates,

Radial potential, density, and wave amplitude profiles are
measured by motorized Langmulr probes which pormits direct display
of these profiles on an X-Y recorder. A set of typlical profiles is
displayed in Figure 2. Axlal wave varlation Is measured by Langmuir
probes which move along the field lines. These probes can rotate In

the cross sectional plane of the plasma.




IV.  EXPERIMENTAL RESULTS

In this section the experimental results are presented. We bo-
gin by discussing the qualitative features which fdentify the density
gradient drift wave, A more detalled discussion of the axial wave-
length foll. . cemparing the experimental results fo the theoretical
predictions. Next, veriflcation of the linear dispersion relation is
presented with measurement of the real frequency and growth rate as a
function of noth the magnetic field and the plasma column |éngth.
Finally we present measurements of the phase angle between the density
and potential perturbations and compare them 7o their corresponding

growth rates.

A. Qualitative Features

There are several qualitative features of densiTykgradien* drift
viaves which are readily observed. Thesd include both the predicted
characteristics which identify the drift wave as well as features
connected with the phenomenon of external excitation of these waves,

The externally excited drift wave appears as almost sinusoldal,
single modes. The wave is observed to propagate in the azimuthal direc-
tion parallel to the electron diamagnetic drift. The azimuthal wave
number (corresponding to ky) is fixed by the periodicity requirement as
m/r vhere m is the mode number and ro Is the position of the maximum of
the radial wave amplitude measured from the plasma center. The mode
number is determined by measuring the phase shift béfwéen Langmuir probes
displaced azimuthally by 90° infervéls. r, ranges from 1.4 to 1.8 cm. A
typical wave profile Is shown in Figure 2 (inner wave profile (1)).

Measurement of the profile width shows that k. ¢ &kx) is approxi-

20
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mately equal to k g (fVRy). In addition we note that the behavior of

the excited waves in the stable regime goes over smoothly to that in

- the unstable regime with regard to these.characteristics,

The outer wave profiie (2) displiyod in Figure 2 is the temper-
ature gradient drift wave mentioned in section 3. We observe that this
oscillation poss ss s charactéristics, with respect to frequency and
propagation properties, which are very similar to those of the density
gradient drift wave (1). Consequentiy positive identification ot the
latter can only result if the regimes where the two waves peak

' for (1) and T"/T ~ icm" for (2)) are tsolated from

(n!/n_~v lem
each other,
Measurement of the density (n‘/no) and potential (e §/kT) per-
turbations demonstrates that these two quantities are equal within 10%
over the entire wave profile. The measuremenis of e ¢,/kT are taken
with a Langmulr probe across a 30 megohm resistor to insure that the
prebe Is floating. Additionally we obseirve that the maximum amplitude
of the driven periurbation Is less than 5% whfch is well within the
linear regime. This condition is maintained throughout the experiment.
Finally we wish to comment on the positioning of the excitation
grid. We observe that maximum response s observed when the grid is at
o Moving it on either side of Fo fedﬂces the amplitude of the re-
ceived signal. In addi+ion moving Thé position of the exciter in the

axlal or azimuthal directions at a fixed r_ does not change the char-

" acteristics of the received signal. To check on any posiible stabilizing

influence by the grid, i+ is perfodically removed from *he plasma to -

verify thet the plasma is stable. Measurements of density and

L

= o
e
Sk
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and potential profiles also show no detectable effects due to the pre-
sence of ‘the grid.

B. Axial Wavelength

The axial wavelength of the drift wave is measured by moving a
Langmuir probe parallel to the magnetic field at a fixed position
in the r~0 plane of the plasma. Since the drift wave is a standing
wave in the axial direction the amplitude profile along z indicates
the axial wavelength, Az. In this connection we observe no phase
shift as we move along z verifying the standing wave nature. The re-
sults for two different plasma potential configurations are shown in
Figure 5. The end p!afes’are adjusted for equal temperatures so that
negligible axial current flows. The plasma potential, U, Is calculated

in terms of The density and temperature according 1024

U= %é[ in | 4K (T) j]

n'o ¢ Ve'l'h

"

where Ri(T) is the Richardson-Dushman equation. We observe a flal-
tening of the axial wave profile and consequently an increase In AZ
as we go fram U = =0,05 volts (electron rich sheaths) to U = +0,50
volts (Ton rich sheaths)., These values of Az can be compared to the

theoretically predicted values obtained from Eq. (13)., Using the values

of U g[ven we find AZ =~ 2L (L is the length of the plasma column) for

U= -0,05 v and A, = 4L for U = 40,50 v. The theoretical curves draun
in Figure 5 are proportional to cos(kZZ) for the computed valued of
kz in the two cases. The agreement between theory and experimenT demon-

strates the debéndence of Az on Thei@nd plate sheé#h conditions, In

addition the dependence of the axial wavelength of L is measured. By
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using the bo!lows assembly described in section 3, L is changed from
60 cm to 46 cm. For the case of electron rich sheathz - - observe a
change in the axial profile as displayed In Figure 6. Agaln the theo-
retical curves are calculated from Eq. (13) and the agreemert between
theory and experiment points out the dependence of kz on L.

C. Variation gi‘The Magne+ic Field

Yerification of the linear dispersion relation, Eq. (7), Is
performed by measuring the real frequency and growth rate as a function
of both the magnetic field and plasma column length. In this part we
examine the variation with the magnetic field.

The Eeal frequency is easily measured by observing the resonant
frequencies when exclting the drift waves. We have measured this fre-
quency as a function of magnetic field. Results are displayed in Fig-
urc 7 for them = |, 2, and 3 modes. In order to make the results
meaningful with respect to the dispersion relation, Eq. (7), we sub-
tract 1he Doppler frequency due to the Eor X B drift from the data,

The Doppler frequency is expressed as

(21) Wee = M. ¢ Eopr
Yo B .

Mo the position of the wave maximum, is .4 cm and Eor’ the zero order
radial electric fileld, is =0.,125 v/cm. Quantitative comparison between

experiment and theory Is made by solving Eq. (7) numerically for e

as a function of B with ro = 1.4 éﬁ, T = 2200°K, Ny = 6.7><l0IO cm-3,

' ' t s : = . o -
no/nO (nO is the density gradient at ro) 0.8 cm ', and kz n/1.8L

]

where L = 60 cm. k, is determined £ rom Eq. (13). From Figure 7 we

observe two principa) areas of agreement between the theory and'exper~

N
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ment. (1) The functional dependence of w, on B agrees with tho pre-

dicted results, (2) The magnitude of the theoretical and experimental
values agree within 25% In most cases. This is within the errors accum-
ulated in measuring Eor and né/no. In connection with this the value

of Eor chosen for the calculation of the Doppler frequency, «0,125 v/cm,
is the average of the measured values of Eor determined from the float=-
ing potential profiles, The same criteria is applied to n(’)/no where the
value of -0,8 cm-' is chosen from density profile measurements. As a
further comment on the real frequency we also observe that its variation
with magnetic field in the unstable regime is very similar to that for the
externally driven modes just discussed. Because c¢'/kT > 0,! and non-~lin=
ear effects are present no attempt to compare the results to the linear
theory is made., However it appears, qualitatively at least, that no sig-
q}ficanf changes in the behavior of Wy VS. B take place between the linear,
stable regime and Th{s weakly non=linear (O.I< e ¢|/kT <0,2) unstable case.

We next measure the {inear growth rate as a function of B, After

the excitation signal is shut off the received signal damps out as
observed in Figure 3. The charactistic damping rate (w;) of such a

signal is a combination of the end plate damping rate (wD) and the lin=
ear growth rate (wb). This can be expressed as

(22) 0y = Wp T owg

Therefore by measuring Wy from the scope traces and evaluating w, we
~can obtain the experimental values of Wy I+ Is this quantity we
~ are after since it is the expression aefermined by the dispersion re=-

lation, Eq. (7)., The end plate damping rate is computed from Eq. (I9)

This computation, based on No = 6.7><10'0cm-3 and T = 2200%K, yields a
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value of l.4:<l03 sec"' for Weye As was discussed In section 2, Wy is
independent of magnetic field. Therefore changes in v, as B varies will
be solely due to by Using this fact and substituting the value of w,
into Eq. (22) we plot the experimental values of wg as a function of

B for the m = |, 2, and 3 modes in Figure 8. The theoretical curves

are calculated from Eq. (7) based on the parameters given for the real

yra

frequency above, We observe the following areas of agreement, () The
functional dependence of wg on B is that predicted. (2) The magnitude

of the theoretical and experimental values agree within 25% for the m = 2
and m = 2 modes for most of the data. (3) The field at which Wy = 0
(cutoff field) for the m = 3 mode, B = 1750 gauss, is within 10% of

the theoretically predicted value. Extrapolating the results for the

m = 2 mode to wg = 0 glves a value of B at cutoff (1200 gauss) which

also agrees within 10%.

. In connection with (1) we observe that wg increases with B for

m = 2 (]200~1500 gauss) and m = 3 (1700-2100 gauss). In this regime
viscous damping Is important (EKfp? + ty/1 3 > 0.3) as discussed in
section 2. These curves are wél| approximated by Eq. (12). For the other

cases viscoslty is no longer domlnanf ahd we observe W decreasing as ///,z
B increases, The variation of wg with B approaches that given by Eq.(10).

With regard to (2) the errors in measuring kz and use of the rectangular

gebmefry approximation to the actual cyllindrical geometry could ac-

count for the 25%Vdiscrepancy. Finally point (3) indicates clearly the

mode dependence of the cutoff field demonstrated in section 2, The

good agreement (&IO%) between the experimental and theoretical values

of the cutoff field obtained in this experiment results from (|) taking
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end plate damping into account and (2) keeping the expressions (| + Kfpf

and (| = Kfp?) in the dispersion relation, Eq. (7). Previous measure~
ments of the cutoff field were reporfed3 which stated that the experi-
mental values were about 50% higher than the theory predicted. However
in this case nelther of the two effects which we considered were taken
Iintfo account in the computation of the cutoff field. As a final comment
we note thal the measured and computed values of wg for the m = | mode
disagree by about a factor of two. Ve have no satisfactory explanation
for this at this *ime. A possible source for this discrepancy Is the

fact that kx, which Is equal to K,, Is also approximately equal to

y
né/no. Therefore the locallzation approximation used to neglect kx terms
in the dispersion relation Is not as valid as for The higher modes.

23 has shown for drift waves in cylindrical

In connection with this Chen
geometries éxcluding ibn viscosity that the growth rate when radiai
dependence (hence x ) s included Is about three times as large as in
the case when radial dependence is neglected.

D. Variation gi_fhe Plasma Column Length

Measurement of Wy @s a function of plasma column length is per-
formed by using the beliows assembly as described in‘sec+Ibn 3. The
results of this measurement are shown for an m = 3 mode In Figure 9.
The value of We is plotted after subtracting the Doppler frequency,

Eq. (21), with a value of Eork= -0,20 v/cm and r, = 1.8 cm. The fre-
quency is observed to decrease with increasing L. This reflects the
effect of Iom viscosity which results In wR becoming a function of

kz as seen'in Eq. (8) and described in section 2. The theoretical curve

is calculated from Eq. (7)., We observe the following'areas of agree-
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ment. (1) The functional varia*ion¢ofﬁuR on L is ‘that predicted,
(2) The magnitude of the theoretical and experimental values of wp
agree within 25%.

We next perform a measurement ofzug as a function of L. The pro-

cedure Is tfo measure o, and then deTermine(»D from Eq. (19) in order

L

D
function of L we rus? de+ermlnetuD at every value of L. The results

to calcula+e(ng from Eq. (22). In this case, however, since W, is a

1

of such a measurement are displayed In Figure 9 for an m = 3 mode. Ye
observe that wg is relatively independent of L. This is a consequence of
the viscous contribution to wg discussed in section 2 and expressed in
Eq. (12). The net result is that the change in The measured net damping‘

rate (wI) is due almost entirely to changes in w_. The theoretical

D
curve ploftted in Figure 9 Is calculated form Eq. (7). We obtain the
following areas of agreement. (|) The theoretical and experimental
values agree vithin 25%. (2) The relative independence of wg as a
function of L is confirmed. (3) The dependence of end plate damping
on L Is demonstrated since the obsérved change In Wy (end plate damp~-

ing rate) over the range of L tested is within 15% of that calculated.

E. Phase Angle Measurement

As discussed in section 2 the bhase angle (©) between +he den=':
sity per+urbaTion and the pofenf{al perturbation is an important par-
ameter since it determines the growth rate of the drift wave in the
non~viscous regime ([b + %, /+, 1 < 0.3). This angle Is measured as a
function of magnetic field and compared to the corresponding growth
rate. Previous measurements have been made of this angle for drift waves

in the unstable regime.3 However they have been made at only a single
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value of B and no correlation with the growth rate has bern presented.
The results of our measurements for an m = 2 mode In the regime where
viscosity is not dominant are displayed in Figure 10, In this casc the
grovth rate Is dependent principally on the phase angle as discussed
in section 2. In making the measurements of the density perturbation
in order to determine the phase angle we must consider that the blased
probe is collecting the entire perturbed flux which Is

Ji R LT * No®V|
where vy s the perturbed ion velocity and Vith is the fon thermal
velocity. Therefore the phase angle wé measure |s between Jl/Jo'
where JO ﬂ:noev‘*h, and eqn/kT. The expression derived in Eq. (14)
accounts for only the first term in Jl‘ A relation can be derived
between J'/Jo and e¢1/kT by calculating v, from the perturbed fon
velocities obtained from the first order equations of motion and
nl/no from the continuity equations. From this the phase angle is
easily obtained and s given by
b!(_wﬂ-v KyVo )ty
|4 by (o) 5w 4 teVe)

(14! Tane= =~

This Is the angle actually measured In the experiment. However for our
experimental conditions the term T“(b)S/2 (we + kva) is < 0.1 and
“Eq. (14)' is very nearly the same as Eq. (14). It Is apparent, though,
that under conditions of large 1, and/or large k;Pi the contribution
from the NoeV) term to the measured phase angle is significant and
must be Included in the analysis. From Figure 10 we see that the den-
sity perturbation (n,) leads the potential perturbation (4,) and that

the growfh‘rafe decreases as the phase angle decreases as we vary the
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magnetic field, The results are compared with the theorotical expres-
sion for tan@ from Eq. (14), The experimental values of Wp ere used

in the calculation. We observe that the functional dependence of ©

on B is that predicted and that the exparimental and theoretical values
agree within 25% for most of the data points.

Observations of the phase angle as a function of B In the vis~
cous dominated range ([b + h‘/fL] > 0.3) show two different types of
behavior., For low densiTiés, (<5x10!0 cn™3), we obsorve that both ©
and wg increase In magnitude with Increasing B as displayed in Figure

Il. For densities > 5x10'C cn™>

» no change In O is detectable as we
vary B even though wg increases with B, In the first case the observed
behavior is not the predicted by the theory and the physical picture
presented In sectton 2, The reason for the discrepancy is not under=
stood at this Time.‘tn the second case, that of densities greater than

5%10'0 o>

, The results agree qualitatively with those predicted in
that we expect the increasing fon inertia contribution o tan® to near-

ly balance the decreasing FLR portion resulting in a slowly decreasing

phase angle.




V. CONCLUSIONS

In this work we have presented a study of the |inear characteris-~
tics of drift waves, Ve find That the method of external oxcitetion of
drift waves by a grid provides a powerful tool in examining The |inear
behavior of drift waves just as in the case of lon acoustic wavcas.'5
In this manner we are able to limit our selves 1o small amp!itude
(e¢‘/kT < 0.1) oscillations in order to Investigate the linear theory of
these waves.

Our work has demonstrated the following:

I) The axial wavelength of drift waves is found to depend on the
sheath cond!Tioﬁs at the cathodes.and on the length of plasma column,

2) End plate damping has a signigicant influence on the stability
of drift waves in a bounded system. When the sheaths at the cathode are
fon rich the recombination loss of the perfurbation at the cathodes is
sufficient to damp out the drift wave. The damping rate Is reduced con-
siderably when electron sheaths are present.

3) The behavior of ;he real and imaginary frequencies of the drift
wave as a function of the magne+t¢ field and plasma column length is //

shown to obey the linear dispersion relation including fon viscosity

‘and finite Larmor radius and when the effects of end plate damping are

considered,
4) The predicted functional dependence of the phase angle is con-
firmed. In addition correlation between the growth rate and the mag-

nitude of the phase angle is demonstrated when ion viscosity does not

dominate the behavior of the drift wave.
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FIGURE CAPTIONS
l; Schematic of the rectangular geometry for the drift wave. Ve have
displayed the zero order quantities and ‘the perpendiculiar (y) pertur-
bation, Also shown Is a schematic of the drift wave in the cylindrical
geometry giving the axial (z) perturbetion and showing the perpen-

dicular and axlal propagation,

2, Radial amplitude profiles showing the separation of the dénsiTy
gradient drift wave (1) and the edge oscillation (2) relative to the

' density and floating potential profiles and the tungsten ionizer plate
(5.8 cm in diameter). The vertical scale is arbitrary. The peak densi‘ty
is 1x10'! en™ and n|/no for the drift wave is < 0.07. E__ (the slope
of potential profile at ro) is =0.15 v/cm where ro = 143 cm. Potassium
plasma, T = 2200°K,

3, Schematic of the experimental set-up. The excitation signal can
be fed ih steady state or gated through the tone burst generator. The
signais can be received through either the ifon saturation bias net-

work or the high frequency circuit for floating potential flucuations. ///’

4, The upper trace is the gafed'exci+afion signal. The vertical
scale is 2v/cm for this trace, The lower trace is the received signal
ahowing the characterisiic dampiég when The.gafe of the Téne buréT
generator is closed. The vertical scale for this trace is Iv/cm. The

value of n'/no < 0,07, The horizbn+al scale Is 1.0 msec/cm.

5. Wave amp!ifude as a function of axial distance for double ended

po R operation of the Q~device. The upper curve Is for fon rich sheaths

O
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giving an axial wavelength of about 4L. The lower curve is for electron
rich sheaths giving an axial wavelength of 2L, The solid lines are the
theoretical curves proportional fo cos(k, z) where k, is determined from

Eq. (13).

6. Wave amplitude profiles as a function of axial distance for two
values of L, Sheaths are elecfron rich so that the axial wavelength

is approximately 2L. The measurements extend from the column center to
a value of z close to one of the plates. The upper curve is for a
column length of 60 cm and the bottom curve for L = 46 cm. The solid
lines are the theoretical curves which are proportional to cos(kzz).

kz is determined from Eq. (13).

7. Real frequency of the externally excited drift wave as a function
of magnetic field for the m = |, 2, and 3 modes. e¢|/kT < 0,05, The
Doppler frequency due to the zero order electric field has been sub-
tracted from the measured frequencies. Eor = =0,125 v/cm at Fo = 1.4 cm
for this case. The solid lines are the theoretical curves calculated

from Eq. (7). Potassium plasma, T = 2200°K.

8. Growth rate of the externally excited drift wave as a function of
the magnetic field for the m = |, 2, and 3 modes. e¢|/kT < 0.05. The
growth rates (ub) plotted are obtained from the measured damping (wI)

by taking into account the end plate damping (wy), calculated from

| Eq; (19), according to the relation wb = Wy T owge The solid lines are

the theoretical curves calculated from Eq. (7). Potassium plasma,

T = 2200°K,

B T
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9., Real frequency (a) and growth rate (b) of the externally ex-

cited drift wave as a function of column length for the m = 3 mode.
e¢,/kT < 0.,05. (a) The Doppler frequency has been subtracted out from
the measured frequencies. In this case Eor = =0.2 v/cm at Fo = 1.8 cm.
(b) The measured damping has been adjusted for end pla%e damping be-
fore being plotted. W, is calculated from Eq. (19) for each value of
L in this case. The solid llnes are the theoretical curves calculated

from Eq. 7). Potassium plasma, T = 2200°K,

{0, Density=potential flucuation phase angle and growth rate for the
externally excited drift wave as a function of magnetic field. A neg-

ative phase angle means that n  leads ¢,. e¢l/kT < 0.05. The curves

I
are for an m = 2 mode. Because [b + 1,/ ] < 0.3 we are in the regime

where jon viscosity is no longer dominant and the curves show the correl-
ation between the growth rate and the phase angle as a function of field.
The solid lines are the theoretical curves. For the growth rate they are

calculated from Eq. (7). For the phase angle they are calculated from

Eq. (14), Potassium plasma, T = 2200°K,

I'l. Density-potential flucuation phase angle and growth rate for the » ///
externally excited drift wave as a function of magnetic field. A nega-

tive phase angle means that n, leads ¢,. e¢ /KT < 0.05. Since Cb + 4, /1, ]

> 0.4 we are within the viscous dominated regime as inaicafed by the

~ behavior of ub. The correlation between Wy and the phase angle is not

predicted by the theory (Eq. (14)) and remains unresolved at this time.

Potassium plasma, T = 2200°K.
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«  APPENDIX

In this appendix we present the details of the calculation of the
of the dispersion relation (Eq. 7). The assumptions used are those |isted
in the text. In this section we solve the equations of motion for the
fons inzero and first order and obtain the first order fon continuity equa-
tion. The same procedure is followed for the electrons., With the assump-
tion of quasi=neutrality the continuity equations for the two specles are
combined to yield the dispersion relation relating w and k. This equation
is then solved for several limiting cases.

Since only ion motion perpendicular to B occurs we can write down
the equation of motion for ions as

[V , ' XB ‘ ' ’
(1) VtM(é’f*‘ij.\.yl)“ne X:Efu"' 5.{..%:: "?I.P“VL-@ “+ _ano:::o

p is The scalar pressure equal to nkT, T 1Is the pressure tensor and ,
is a tirst order quan+i+y,vand Eg is a generalized gravitatichal force.

The latter is usually the representation in rectangular geometry of the
centrifugal force arising from an ExB rotation of a cylindrical plasma

&ue to a zero order radial electric field. The effects of this force on

the gfowTh rate and real frequency are small compared to THe remaining °

terms for our experimental conditions so this force is neglected, As a
consequence the only effect a zero order electric field has is to add a

Doppler shift to the real frequency. The Doppler frequency is subtracted

from the data and therefore we can solve the equations in a reference

frame moving with the ExB drift of the zero order electric field. The




..M//;.;?":A,‘H e

A2

zero order steady state equation then becomes with Y4® Yoy s
Voo X B
(2) 0 = v\e[ k2=~ V(nKT) =0
c

Since ﬁzlno = dno/dx £ and B = BZ, the only component we have of (2)

is the x component. Therefore ve solve for yono get
(3) Vow.-::; c — =% = -

where Vo Is the electron diamagnetic drift velocity,

The first order motjon is obtained by linearizing Eq. (I} with

vy=¥, t ¥y n=n, +n,, and _E-;__L=—YZL<3>, Thgrefore Eq. (1) becomes
oY e V% B] . n KT
("‘% YNt Mo“i-')"‘ S |-uge Y2 E). W e
(4)

_‘_ ‘S_I [ — ._.-‘-—- g
B No M ?;Ln. B Y{LIL

after dividing by nM. This is simplified by using

- \5:_" Y..}J - Vﬁ = - EJ: !}_‘}
(5) ( Vin """‘\) M VL( Y1 .

Mmin, +° No °

The terms 34'§Z!o + !o-ﬁﬁx4 cah be wriften using Eq. (3) and the assump-

tion 2 /ox (nc')/no) = 0 as ;
AV, A A
(6) Voy ( 57{% Rt QWY Y)

Finally the expression for jz is written fo first order as

IV *.étgn %LYN _. OVYx
TN oﬂ“oKT' ?6x .QY Y oK
A o .‘ aw | - ‘

¢ oYy 2V 2V _ 2V,

)

oy  o¥ 2k Y

(7)




:‘_),_}'x... Q—-\-,Y aVY A+ 9\/,.
“a“oKTV L% 2 Y
T T Ew, W
IVy 1 OVy Yy — AVy
X A dNy Ak

e
-

2
ally valid In our case. Substit

ol | = | and o¢

and taking the x and y components respectively produces

uting Egs.

(5),

(6), and (7) into Eq. (4)

A3

5/4 in the limit (lﬁi/b%)zduil which is experiment-

3% av,,e",_%‘\ggj ma( )4-k'r n[
atx 4+ V, 9Y% A + X ¥ 57 \ vl Aweh T, Y+
avx] kT n .3_\'/’{ ] T [a \!Y',_'c’)"‘\/]
@® & AuiM W, | 9% A M |
o kT T2 2 Vx4 3’“\!;4}
qup L o¥ BN,
for the x component and
AVy v 2y . e |- 2N %8 k'rg(m,) KT *’l'[év
ot °73Y T ™M ay C ™M ay 9Mw>n° Sy
| av, Q._ 0! g_vy_’,,@_\zx]_, kT Yoy, a\,j
9 J” Y J ¥ oy 4 awM Layr *
KT 2™V 8"\/J
t Vi \
4wiM {_87& Y

for the y componenf. Using *he assumed periodic dependence of the per-

turbed quantities on these equations we get

eé‘
KT

Ny

no "“VY[(JJ -"'-v ZV l‘\‘z’ "

-'& (O\J + kva)Vx - “1 kx "Hﬂ(
(10)

e,

; kY1)
- ;" ky Yo '&7:" "(ky‘kx)() “’J"'W[ ( L"‘"“X (’ G

, l\ \! Ol

and




A4

. . 2 (‘q’ o Vi - v *!' . > ar

an
“,)

Cn

where e ? = Vifh/ou the ton cyclotron radius with Vigh = (kT/M), the

fon thermal velocity. The following quantities are defined for con-

venience;

A= Libys - Lk v Y _ LV
- t‘)‘ Y\‘
% = K Yla
Solving Eqs. (10) and (11) for v, and v, glves

_

Y

= Ky Vigw (Q .+ D) . KLV | v
(12) VY=‘ B St a‘ ..\. VN & (Q’JG.‘.C‘)

)

Lo T (2w F T (T Ak

and

.

(13) V""" “’ ‘**3}(“"" +C) kﬁy}hgj@ (L4 D)

(raced “wr = O+ 2Cw)

In obtaining Vo and v we have made the approximations that (DZ/ODZ

y g

(C/uoc)z, (Sl/buc)z are all <« | and therefore are neglected. These
are quite valid experimentally. The next step is to linearize the con-

tinuity equation. This equation is just




T L g b : A - e o s g

Linearizing and Fourier analyzing ylelds

“b...
(14) ~zXZ*’+kaW**kYW*W% O.

Substituting Eqs. (12) and (I13) into Eq. (14) gives us

Q% (1+20w7) + b 2(24D) ~ W (1, 40) 4
(15) 'k | ¢
+ ".35....9%(52-%0): 0 -
m‘-
For %he case kx:> n(')/no and 3 TR the expressions for C and D
can be approximated as
- Lt v
p-.:.- LI b)’& - Q_k)'vD
(16) 1
c =~ 3 buy

and the last term of Eq. (I15) can be dropped so that thls equation is now
- Y1 . ko £ 7.,
Qb (-py+ bE (wellyVp +idbyg) — Lo (we-3bud)=0
L)

or upon rearranging terms

\ﬂ \ -, L) r’é’
an g~ Kyv De,,i (1-b) + bw ﬁ’rz:g (\% ‘) 0

where 13 = 1/4(b%v ),
We next obtain an expression for the electron continuity equation.
The equations of motion are

- L Y
(18 ©O= —ne [_E.L“", == J ~ViP

for motion perpendicular to B, and | | R v i




AG

(19) 0= ~ne E,, '"VuP al L mcvc’:i,yne.

for motion parallel +to B. \)et is the electron-ion collision frequency.

The zero order motion from Eq. (18) Is

leeVore B | ypdilo= O
J ci¥

A
since Yﬁ Ng = dno/dx X, Thus

KT v,
e i d ._J -
ance we assume Euo =d /dz = 0 for zero order quantities, Vo = 0.

For +he first order motion we linearize Eqs. (18) and (19) as in he

case of the fons. The X and y components are respectively

n Qaaj' = V], & VYQB - Y, KTaax (Yl‘c) =0

and

b Ve B D e
WQQ’ 5?‘ -+ N xc? Y\UKT ('ﬁ':) = QO

Agaln Fourier analyzing and solving for Vex and Vye we obtain

- 2 k Wie  ed,
(21) Vxe, = UQ‘_ ( 'h""o - 'E"'T
and

~ _ RV [ The L e
(22) Vie ® Tmor \nme KT

For the z component we solve Eq. (19) to obtain

.‘I-
e Ven (2w,
e "w“‘Kz"‘“ﬁz:r(m o

P il T e .

where Vef. = (kT/m ) , the electron thermal VGlocify The linearized




A7
electron continuity equation is

{
. [ A " , N A n ' _
(20~ P a1 { Ry Vet KyVye 1 Voo ) * Vi W =0

whore .fle 2 0 - kva. Substituting Eqs, (21), (22), and (23) into

Eq. (24) glves us

n v (e _ed, &.‘,e.,szi%);-,
(25) aeﬁy’»kv"n(#: o qu(ﬂn T o

or upon rearrangling terms

~ sy eb i+ (Le_eh)o
where *R’ = kz vefh/’)el‘

We can now obtain the dispersion relation by solving Eas. (I5) or
(17) and (25) or (26) for n /n_ and n /N, respectively and equating the
two expressions., We solve Eq. (25) for ”Ie/"o in terms of §§(=eﬁ/kT + n./no)

and substitute this expression into Eq. (I15). First of all.Sze =~ kyVD =

= L1 ZkaD sihce L2 = W + kva’ Therefore Eq. (25) becomes

Viie e ¢ [ Rie eé -
LW "Ky D( Kli“o)t‘ {"u( -‘?T.)

or rearranging and solving for n /n ve get

n Nie .. ‘\\: V * 2 ‘L“ é‘;
wb ﬂ. N .
Substituting into Eq. (15) yields

L\o-! i ‘\x D]—\-Sl[bD»&- 7z- b.g ky\; (H_ch-‘)’t

(27) +-tUk2cw‘) k\‘\/b(lf'('w"‘)-fmkg,oo -2 Kl ]’r .
| | < Gy "o




+ 7; bD - KkyV D(wa;:')"“ - 2ok, o

" &2“ ba, .

This complicated dispersion relation Is greatly simplified by using the
assumptions (\)“/u!c), (k;'.né/no) < |. This has allrcady been done
In obtaining Eq.(17), Therefore by combining Eqs. (17) and (26) as we

Just did for Eqs, (15) and (25) we get the dispersion relation presented
in the text,

iy L }] ']/V[( ,"‘L)"‘J']"
2 ‘ L KA - 2L .
(28) @ b w[kyvbb+1{t,‘('+b)+'&'i R "‘u( Y
2
-l -—-t. :Cl
Tyt
We can solve this equation in several limits by expanding the square

root. First,

abwz- LkWbri(t ACLEEMIF: {U*’W “( ,,(””)*'4;)]

'
L tbik, | 0= |t t.m}

or

1] J.

i
3b 2 ()-Ldpy- 1 ] ,
+,le‘;*z[at<yvob(.&,‘< - | /

Factoring out the real part of ‘the radical and assuming
2
- AN
(£,0000% ) 2A > () e
!

we can write

g T (kb 2B
).bw':"": %‘(’\’Db _%,z(‘iu(l%b) r_{l)]ﬁzA[l o Y‘ AL""(:L:)

_ . lxb {kw"n(%‘“—%b)"%;)] A | | _ {

2bw= - {K,\’ b '%z( ('Tb)”",{‘ )] {( YW b)* (’& (!+L)!-)

”

iy R o
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or again with the assumption we can expand +the square rools to obtain

2
- | [ Y (k V b)""“ 1
wbo = - [b (e “f‘["‘ B "‘““L‘] "

(29)

' ' . N b oy L
, ¥ b [”‘k?v"( :%;\ “MJ& b)“ '%J._)_:l bk[.ji':,;(‘m % b*:%' b) “’ﬁu"?.l’.“ %l’) ; "1},:)
X L e A‘L‘ .‘a [ 2 A‘r o

The assumption Implies that (4,)"2

> (kyvob)z. Since we are 1o obtaln

axpressions valld for +y'¢ck vy and > k v, this necessarily Iimits

y'p y

the valuo of b so that (t,)™> (k vyb)%. Our experimontal conditions

show that ':z kva so that the assumption allowing vhe expansion Is

quite valid. We now can write down expressions for W

R and W from Eq.
(29) as 3 '
N (2 G-k by~ -—)
Abwe = ~KyVp + K'Y” (,’bn( 3 ) "-'.h.
A
or ) tu, )
KyVo L‘” b~ ‘/'%]
w :: i “ v -
(30) TR : N
[l + b4 ""L-_L]
and

v~

-8b 3 o
~ (kb T -2pat )~ (-L1y)+
2buwy = Euby ( Yi.),‘_ (kvvob){?g:(' ’3"“"%") {,"1-,_"(“ :’il’)'%,é’_\

A A

or

- 3, |
- i , \Ag A
GH 2T (b tag) (H—M*"Q)} LCANCR

In the limit ‘r*éao and b<4< | we get




A10

and no stabilizing effect is predicted. For smal! +, such that
+;'>> kyvD and Therefore 1,44+, , the terms +, /1, in Eq. (31) can be
dropped. If we further make the assumption b << | then Eq. (3§) can

be written as

\
b (kg ey by, .

(32) Wy = UKWV Y b, | |~

Stability is achieved when [b(kva)zﬁ,] = ; . Finally in the case of

large 1“ such that +;'

y D
and the expression for oog becomes e
N r
(33) wﬁ= , TG ; A
| (1ebt ) -

»

and stability comes about when t,.= 1, (I-b),

sk v the last term in Eq. (31) can be neglected

S

e R

o Wi,
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