44,543 research outputs found

    Self-Organization of Balanced Nodes in Random Networks with Transportation Bandwidths

    Full text link
    We apply statistical physics to study the task of resource allocation in random networks with limited bandwidths along the transportation links. The mean-field approach is applicable when the connectivity is sufficiently high. It allows us to derive the resource shortage of a node as a well-defined function of its capacity. For networks with uniformly high connectivity, an efficient profile of the allocated resources is obtained, which exhibits features similar to the Maxwell construction. These results have good agreements with simulations, where nodes self-organize to balance their shortages, forming extensive clusters of nodes interconnected by unsaturated links. The deviations from the mean-field analyses show that nodes are likely to be rich in the locality of gifted neighbors. In scale-free networks, hubs make sacrifice for enhanced balancing of nodes with low connectivity.Comment: 7 pages, 8 figure

    Antipersistant Effects in the Dynamics of a Competing Population

    Full text link
    We consider a population of agents competing for finite resources using strategies based on two channels of signals. The model is applicable to financial markets, ecosystems and computer networks. We find that the dynamics of the system is determined by the correlation between the two channels. In particular, occasional mismatches of the signals induce a series of transitions among numerous attractors. Surprisingly, in contrast to the effects of noises on dynamical systems normally resulting in a large number of attractors, the number of attractors due to the mismatched signals remains finite. Both simulations and analyses show that this can be explained by the antipersistent nature of the dynamics. Antipersistence refers to the response of the system to a given signal being opposite to that of the signal's previous occurrence, and is a consequence of the competition of the agents to make minority decisions. Thus, it is essential for stabilizing the dynamical systems.Comment: 4 pages, 6 figure

    Cascades of Dynamical Transitions in an Adaptive Population

    Get PDF
    In an adaptive population which models financial markets and distributed control, we consider how the dynamics depends on the diversity of the agents' initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. This change in the environment results in dynamical transitions from vanishing to non-vanishing step sizes. When the diversity decreases further, we find a cascade of dynamical transitions for the different signal dimensions, supported by good agreement between simulations and theory. Besides, the signal of the largest step size at the steady state is likely to be the initial signal.Comment: 4 pages, 8 figure

    Highlights of the TEXONO Research Program on Neutrino and Astroparticle Physics

    Full text link
    This article reviews the research program and efforts for the TEXONO Collaboration on neutrino and astro-particle physics. The ``flagship'' program is on reactor-based neutrino physics at the Kuo-Sheng (KS) Power Plant in Taiwan. A limit on the neutrino magnetic moment of \munuebar < 1.3 X 10^{-10} \mub} at 90% confidence level was derived from measurements with a high purity germanium detector. Other physics topics at KS, as well as the various R&D program, are discussedComment: 10 pages, 9 figures, Proceedings of the International Symposium on Neutrino and Dark Matter in Nuclear Physics (NDM03), Nara, Japan, June 9-14, 200

    Electronic visualization of gas bearing behavior

    Get PDF
    Visualization technique produces a visual simulation of gas bearing operation by electronically combining the outputs from the clearance probes used to monitor bearing component motion. Computerized recordings of the probes output are processed, displayed on an oscilloscope screen and recorded with a high-speed motion picture camera

    Models of Financial Markets with Extensive Participation Incentives

    Full text link
    We consider models of financial markets in which all parties involved find incentives to participate. Strategies are evaluated directly by their virtual wealths. By tuning the price sensitivity and market impact, a phase diagram with several attractor behaviors resembling those of real markets emerge, reflecting the roles played by the arbitrageurs and trendsetters, and including a phase with irregular price trends and positive sums. The positive-sumness of the players' wealths provides participation incentives for them. Evolution and the bid-ask spread provide mechanisms for the gain in wealth of both the players and market-makers. New players survive in the market if the evolutionary rate is sufficiently slow. We test the applicability of the model on real Hang Seng Index data over 20 years. Comparisons with other models show that our model has a superior average performance when applied to real financial data.Comment: 17 pages, 16 figure
    corecore