2,837 research outputs found

    An integrated information retrieval and document management system

    Get PDF
    This paper describes the requirements and prototype development for an intelligent document management and information retrieval system that will be capable of handling millions of pages of text or other data. Technologies for scanning, Optical Character Recognition (OCR), magneto-optical storage, and multiplatform retrieval using a Standard Query Language (SQL) will be discussed. The semantic ambiguity inherent in the English language is somewhat compensated-for through the use of coefficients or weighting factors for partial synonyms. Such coefficients are used both for defining structured query trees for routine queries and for establishing long-term interest profiles that can be used on a regular basis to alert individual users to the presence of relevant documents that may have just arrived from an external source, such as a news wire service. Although this attempt at evidential reasoning is limited in comparison with the latest developments in AI Expert Systems technology, it has the advantage of being commercially available

    Racial differences in neurocognitive outcomes post-stroke: The impact of healthcare variables

    Get PDF
    AbstractObjectives:The present study examined differences in neurocognitive outcomes among non-Hispanic Black and White stroke survivors using the NIH Toolbox-Cognition Battery (NIHTB-CB), and investigated the roles of healthcare variables in explaining racial differences in neurocognitive outcomes post-stroke.Methods:One-hundred seventy adults (91 Black; 79 White), who participated in a multisite study were included (age:M=56.4;SD=12.6; education:M=13.7;SD=2.5; 50% male; years post-stroke: 1–18; stroke type: 72% ischemic, 28% hemorrhagic). Neurocognitive function was assessed with the NIHTB-CB, using demographically corrected norms. Participants completed measures of socio-demographic characteristics, health literacy, and healthcare use and access. Stroke severity was assessed with the Modified Rankin Scale.Results:An independent samplesttest indicated Blacks showed more neurocognitive impairment (NIHTB-CB Fluid Composite T-score:M=37.63;SD=11.67) than Whites (Fluid T-score:M=42.59,SD=11.54;p=.006). This difference remained significant after adjusting for reading level (NIHTB-CB Oral Reading), and when stratified by stroke severity. Blacks also scored lower on health literacy, reported differences in insurance type, and reported decreased confidence in the doctors treating them. Multivariable models adjusting for reading level and injury severity showed that health literacy and insurance type were statistically significant predictors of the Fluid cognitive composite (p&lt;.001 andp=.02, respectively) and significantly mediated racial differences on neurocognitive impairment.Conclusions:We replicated prior work showing that Blacks are at increased risk for poorer neurocognitive outcomes post-stroke than Whites. Health literacy and insurance type might be important modifiable factors influencing these differences. (JINS, 2017,23, 640–652)</jats:p

    Screening for Elevated Blood Lead Levels in Children and Pregnant Women: US Preventive Services Task Force Recommendation Statement

    Get PDF
    Importance: Elevated blood lead levels in children are associated with neurologic effects such as behavioral and learning problems, lower IQ, hyperactivity, hearing problems, and impaired growth. In pregnant women, lead exposure can impair organ systems such as the hematopoietic, hepatic, renal, and nervous systems, and increase the risk of preeclampsia and adverse perinatal outcomes. Many of the adverse health effects of lead exposure are irreversible. Objective: To update the 2006 US Preventive Services Task Force (USPSTF) recommendation on screening for elevated blood lead levels in children and pregnant women. Evidence Review: The USPSTF reviewed the evidence on the benefits and harms of screening for and treatment of elevated blood lead levels. In this update, an elevated blood lead level was defined according to the Centers for Disease Control and Prevention reference level of 5 mug/dL. Findings: The USPSTF found adequate evidence that questionnaires and other clinical prediction tools to identify asymptomatic children with elevated blood lead levels are inaccurate. The USPSTF found adequate evidence that capillary blood testing accurately identifies children with elevated blood lead levels. The USPSTF found inadequate evidence on the effectiveness of treatment of elevated blood lead levels in asymptomatic children 5 years and younger and in pregnant women. The USPSTF found inadequate evidence regarding the accuracy of questionnaires and other clinical prediction tools to identify asymptomatic pregnant women with elevated blood lead levels. The USPSTF found inadequate evidence on the harms of screening for or treatment of elevated blood lead levels in asymptomatic children and pregnant women. The USPSTF concluded that the current evidence is insufficient, and that the balance of benefits and harms of screening for elevated blood lead levels in asymptomatic children 5 years and younger and in pregnant women cannot be determined. Conclusions and Recommendation: The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for elevated blood lead levels in asymptomatic children. (I statement) The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for elevated blood lead levels in asymptomatic pregnant persons. (I statement)

    Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West Nile virus (WNV) persists in humans and several animal models. We previously demonstrated that WNV persists in the central nervous system (CNS) of mice for up to 6 months post-inoculation. We hypothesized that the CNS immune response is ineffective in clearing the virus.</p> <p>Results</p> <p>Immunocompetent, adult mice were inoculated subcutaneously with WNV, and the CNS immune response was examined at 1, 2, 4, 8, 12 and 16 weeks post-inoculation (wpi). Characterization of lymphocyte phenotypes in the CNS revealed elevation of CD19<sup>+ </sup>B cells for 4 wpi, CD138 plasma cells at 12 wpi, and CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells for at least 12 wpi. T cells recruited to the brain were activated, and regulatory T cells (Tregs) were present for at least 12 wpi. WNV-specific antibody secreting cells were detected in the brain from 2 to 16 wpi, and virus-specific CD8<sup>+ </sup>T cells directed against an immunodominant WNV epitope were detected in the brain from 1 to 16 wpi. Furthermore, these WNV-specific immune responses occurred in mice with and without acute clinical disease.</p> <p>Conclusions</p> <p>Virus-specific immune cells persist in the CNS of mice after WNV infection for up to 16 wpi.</p

    Adult Female Fragile X Premutation Carriers Exhibit Age- and CGG Repeat Length-Related Impairments on an Attentionally Based Enumeration Task

    Get PDF
    The high frequency of the fragile X premutation in the general population and its emerging neurocognitive implications highlight the need to investigate the effects of the premutation on lifespan cognitive development. Until recently, cognitive function in fragile X premutation carriers (fXPCs) was presumed to be unaffected by the mutation. Although as a group fXPCs did not differ from healthy controls (HCs), we show that young adult female fXPCs show subtle age- and significant fragile X mental retardation 1 (FMR1) gene mutation-modulated cognitive function as tested by a basic numerical enumeration task. These results indicate that older women with the premutation and fXPCs with greater CGG repeat lengths were at higher risk for difficulties in the deployment of volitional attention required to count 5–8 items, but spared performance when spatial shifts of attention were minimized to subitize a few (1–3). Results from the current study add to a growing body of evidence that suggests the premutation allele is associated with a subtle phenotype and implies that the cognitive demands necessary for counting are less effectively deployed in female fXPCs compared to HCs

    Caudal Polymorphism and Cephalic Morphology among First-Stage Larvae of \u3ci\u3eParelaphostrongylus odocoilei\u3c/i\u3e (Protostrongylidae: Elaphostrongylinae) in Dall’s Sheep from the Mackenzie Mountains, Canada

    Get PDF
    We demonstrate polymorphism in the structure of the tail among first-stage larvae of Parelaphostrongylus odocoilei (Protostrongylidae). Two distinct larvae, both with a characteristic dorsal spine, include (1) a morphotype with a kinked conical tail marked by three distinct transverse folds or joints and a symmetrical terminal tail spike and (2) a morphotype with a digitate terminal region lacking folds or joints and with an asymmetrical, subterminal tail spike. These divergent larval forms had been postulated as perhaps representing distinct species of elaphostrongyline nematodes. Application of a multilocus approach using ITS-2 sequences from the nuclear genome and COX-II sequences from the mitochondrial genome confirmed the identity of these larvae as P. odocoilei. Additionally, based on scanning electron microscopy (low-temperature field emission), the cephalic region of these larvae consisted of a cuticular triradiate stoma surrounded by six single circumoral papillae of the inner circle, ten papillae of the outer circle (four paired and two single), and two lateral amphids. Ours is the first demonstration of structural polymorphism among larval conspecifics in the Metastrongyloidea and Strongylida. The basis for this polymorphism remains undetermined, but such phenomena, if discovered to be more widespread, may contribute to continued confusion in discriminating among first-stage larvae for species, genera, and subfamilies within Protostrongylidae

    The Potential Trajectory of Carbapenem-Resistant Enterobacteriaceae, an Emerging Threat to Health-Care Facilities, and the Impact of the Centers for Disease Control and Prevention Toolkit.

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE), a group of pathogens resistant to most antibiotics and associated with high mortality, are a rising emerging public health threat. Current approaches to infection control and prevention have not been adequate to prevent spread. An important but unproven approach is to have hospitals in a region coordinate surveillance and infection control measures. Using our Regional Healthcare Ecosystem Analyst (RHEA) simulation model and detailed Orange County, California, patient-level data on adult inpatient hospital and nursing home admissions (2011-2012), we simulated the spread of CRE throughout Orange County health-care facilities under 3 scenarios: no specific control measures, facility-level infection control efforts (uncoordinated control measures), and a coordinated regional effort. Aggressive uncoordinated and coordinated approaches were highly similar, averting 2,976 and 2,789 CRE transmission events, respectively (72.2% and 77.0% of transmission events), by year 5. With moderate control measures, coordinated regional control resulted in 21.3% more averted cases (n = 408) than did uncoordinated control at year 5. Our model suggests that without increased infection control approaches, CRE would become endemic in nearly all Orange County health-care facilities within 10 years. While implementing the interventions in the Centers for Disease Control and Prevention's CRE toolkit would not completely stop the spread of CRE, it would cut its spread substantially, by half

    APC-targeted proinsulin expression inactivates insulin-specific memory CD8+ T cells in NOD mice

    Get PDF
    Type 1 diabetes (T1D) results from T-cell-mediated autoimmune destruction of pancreatic β cells. Effector T-cell responses emerge early in disease development and expand as disease progresses. Following β-cell destruction, a long-lived T-cell memory is generated that represents a barrier to islet transplantation and other cellular insulin-replacement therapies. Development of effective immunotherapies that control or ablate β-cell destructive effector and memory T-cell responses has the potential to prevent disease progression and recurrence. Targeting antigen expression to antigen-presenting cells inactivates cognate CD8+ effector and memory T-cell responses and has therapeutic potential. Here we investigated this in the context of insulin-specific responses in the non-obese diabetic mouse where genetic immune tolerance defects could impact on therapeutic tolerance induction. Insulin-specific CD8+ memory T cells transferred to mice expressing proinsulin in antigen-presenting cells proliferated in response to transgenically expressed proinsulin and the majority were rapidly deleted. A small proportion of transferred insulin-specific Tmem remained undeleted and these were antigen-unresponsive, exhibited reduced T cell receptor (TCR) expression and H-2Kd/insB15-23 tetramer binding and expressed co-inhibitory molecules. Expression of proinsulin in antigen-presenting cells also abolished the diabetogenic capacity of CD8+ effector T cells. Therefore, destructive insulin-specific CD8+ T cells are effectively inactivated by enforced proinsulin expression despite tolerance defects that exist in diabetes-prone NOD mice. These findings have important implications in developing immunotherapeutic approaches to T1D and other T-cell-mediated autoimmune diseases

    Formulation of hydrophobic peptides for skin delivery via coated microneedles

    Get PDF
    Microneedles (MNs) have been investigated as a minimally-invasive delivery technology for a range of active pharmaceutical ingredients (APIs). Various formulations and methods for coating the surface of MNs with therapeutics have been proposed and exemplified, predominantly for hydrophilic drugs and particulates. The development of effective MN delivery formulations for hydrophobic drugs is more challenging with dosing restrictions and the use of organic solvents impacting on both the bioactivity and the kinetics of drug release. In this study we propose a novel formulation that is suitable for MN coating of hydrophobic auto-antigen peptides currently being investigated for antigen specific immunotherapy (ASI) of type 1 diabetes. The formulation, comprising three co-solvents (water, 2-methyl-2-butanol and acetic acid) and polyvinylalcohol 2000 (PVA2000) can dissolve both hydrophilic and hydrophobic peptide auto-antigens at relatively high, and clinically relevant, concentrations (25 mg/ml or 12.5 mg/ml). The drug:excipient ratio is restricted to 10:1 w/w to maximise dose whilst ensuring that the dry-coated payload does not significantly impact on MN skin penetration performance. The coating formulation and process does not adversely affect the biological activity of the peptide. The delivery efficiency of the coated peptide into skin is influenced by a number of parameters. Electropolishing the metal MN surface increases delivery efficiency from 2.0 ± 1.0% to 59.9 ± 6.7%. An increased mass of peptide formulation per needle, from 0.37 μg to 2 μg peptide dose, resulted in a thicker coating and a 20% reduction in the efficiency of skin delivery. Other important performance parameters for coated MNs include the role of excipients in assisting dissolution from the MNs, the intrinsic hydrophobicity of the peptide and the species of skin model used in laboratory studies. This study therefore both exemplifies the potential of a novel formulation for coating hydrophobic and hydrophilic peptides onto MN devices and provides new insight into the factors that influence delivery efficiency from coated MNs. Importantly, the results provide guidance for identifying critical attributes of the formulation, coating process and delivery device, that confer reproducible and effective delivery from coated MNs, and thus contribute to the requirements of the regulators appraising these devices
    corecore