41,891 research outputs found

    Elliptic Flow from a Transversally Thermalized Fireball

    Full text link
    The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynamics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model which exhibits thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with those from hydrodynamics. With the final particle yield and \kt-distribution fixed, the transversally thermalized model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the elliptic flow of massless particles such as direct photons.Comment: revtex4, 15 pages + 10 embedded EPS figure

    Color mixing in high-energy hadron collisions

    Get PDF
    The color mixing of mesons propagating in a nucleus is studied with the help of a color-octet Pomeron partner present in the two-gluon model of the Pomeron. For a simple model with four meson-nucleon channels, color mixings are found to be absent for pointlike mesons and very small for small mesons. These results seem to validate the absorption model with two independent color components used in recent analyses of the nuclear absorption of J/ψJ/\psi mesons produced in nuclear reactions.Comment: 3 journal-style page

    J/Psi Propagation in Hadronic Matter

    Full text link
    We study J/ψ\psi propagation in hot hadronic matter using a four-flavor chiral Lagrangian to model the dynamics and using QCD sum rules to model the finite size effects manifested in vertex interactions through form factors. Charmonium breakup due to scattering with light mesons is the primary impediment to continued propagation. Breakup rates introduce nontrivial temperature and momentum dependence into the J/ψ\psi spectral function.Comment: 6 Pages LaTeX, 3 postscript figures. Proceedings for Strangeness in Quark Matter 2003, Atlantic Beach, NC, March 12-17, 2003; minor corrections in version 2, to appear in J. Phys.

    Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies

    Full text link
    Using the technique of quantum transport of the interfering pair we examine the Hanbury-Brown-Twiss (HBT) interferometry signatures for the particle-emitting sources of pions and kaons produced in the heavy ion collisions at GSI-FAIR energies. The evolution of the sources is described by relativistic hydrodynamics with the system equation of state of the first-order phase transition from quark-gluon plasma (QGP) to hadronic matter. We use quantum probability amplitudes in a path-integral formalism to calculate the two-particle correlation functions, where the effects of particle decay and multiple scattering are taken into consideration. We find that the HBT radii of kaons are smaller than those of pions for the same initial conditions. Both the HBT radii of pions and kaons increase with the system initial energy density. The HBT lifetimes of the pion and kaon sources are sensitive to the initial energy density. They are significantly prolonged when the initial energy density is tuned to the phase boundary between the QGP and mixed phase. This prolongations of the HBT lifetimes of pions and kaons may likely be observed in the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure

    Heavy Quarkonia and Quark Drip Lines in Quark-Gluon Plasma

    Get PDF
    Using the potential model and thermodynamical quantities obtained in lattice gauge calculations, we determine the spontaneous dissociation temperatures of color-singlet quarkonia and the `quark drip lines' which separate the region of bound QQˉQ\bar Q states from the unbound region. The dissociation temperatures of J/ψJ/\psi and χb\chi_b in quenched QCD are found to be 1.62TcT_c and 1.18Tc1.18T_c respectively, in good agreement with spectral function analyses. The dissociation temperature of J/ψJ/\psi in full QCD with 2 flavors is found to be 1.42TcT_c. For possible bound quarkonium states with light quarks, the characteristics of the quark drip lines severely limit the stable region close to the phase transition temperature. Bound color-singlet quarkonia with light quarks may exist very near the phase transition temperature if their effective quark mass is of the order of 300-400 MeV and higher.Comment: 8 pages, 2 figures, in LaTex, invited talk presented at the International Conference on Strangeness in Quark Matter, UCLA, March 26-31, 200

    Unification of bulk and interface electroresistive switching in oxide systems

    Get PDF
    We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.Comment: 4 pages, 3 figures, accepted in PR

    The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae

    Full text link
    Context. The precise determination of the present-day expansion rate of the Universe, expressed through the Hubble constant H0H_0, is one of the most pressing challenges in modern cosmology. Assuming flat Λ\LambdaCDM, H0H_0 inference at high redshift using cosmic-microwave-background data from Planck disagrees at the 4.4σ\sigma level with measurements based on the local distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe Ia), often referred to as "Hubble tension". Independent, cosmological-model-insensitive ways to infer H0H_0 are of critical importance. Aims. We apply an inverse-distance-ladder approach, combining strong-lensing time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are merely good relative distance indicators, but by anchoring them to strong gravitational lenses one can obtain an H0H_0 measurement that is relatively insensitive to other cosmological parameters. Methods. A cosmological parameter estimate is performed for different cosmological background models, both for strong-lensing data alone and for the combined lensing + SNe Ia data sets. Results. The cosmological-model dependence of strong-lensing H0H_0 measurements is significantly mitigated through the inverse distance ladder. In combination with SN Ia data, the inferred H0H_0 consistently lies around 73-74 km s1^{-1} Mpc1^{-1}, regardless of the assumed cosmological background model. Our results agree nicely with those from the local distance ladder, but there is a >2σ\sigma tension with Planck results, and a ~1.5σ\sigma discrepancy with results from an inverse distance ladder including Planck, Baryon Acoustic Oscillations and SNe Ia. Future strong-lensing distance measurements will reduce the uncertainties in H0H_0 from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio

    Anomalous J/psi suppression and charmonium dissociation cross sections

    Get PDF
    We study J/ψJ/\psi suppression in Pb+Pb collisions at CERN-SPS energies in hadronic matter with energy- and temperature-dependent charmonium dissociation cross sections calculated in the quark-interchange model of Barnes and Swanson. We find that the variation of J/ψ\psi survival probability from peripheral to central collisions can be explained as induced by hadronic matter absorption in central collisions.Comment: 30 pages, 8 figures, LaTex, changed for the latest NA50 dat

    Exploring Early Parton Momentum Distribution with the Ridge from the Near-Side Jet

    Full text link
    In a central nucleus-nucleus collision at high-energies, medium partons kicked by a near-side jet acquire a momentum along the jet direction and subsequently materialize as the observed ridge particles. They carry direct information on the early parton momentum distribution which can be extracted by using the ridge data for central AuAu collisions at \sqrt{s_{NN}}=200 GeV. The extracted parton momentum distribution has a thermal-like transverse momentum distribution but a non-Gaussian, relatively flat rapidity distribution at mid-rapidity with sharp kinematic boundaries at large rapidities that depend on the transverse momentum.Comment: In Proceedings of 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions, Jaipur, India, Feb. 4-10, 200
    corecore