61,831 research outputs found

    An improved single-step lysis protocol to measure luciferase bioluminescence in Plasmodium falciparum

    Get PDF
    This report describes the optimization and evaluation of a simple single-step lysis protocol to measure luciferase bioluminescence from genetically modified Plasmodium falciparum. This protocol utilizes a modified commercial buffer to improve speed of assay and consistency in the bioluminescence signal measured by reducing the manipulation steps required to release the cytoplasmic fraction. The utility of this improved assay protocol is demonstrated in typical assays that explore absolute and temporal gene expression activity

    Elliptic Flow from a Transversally Thermalized Fireball

    Full text link
    The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynamics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model which exhibits thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with those from hydrodynamics. With the final particle yield and \kt-distribution fixed, the transversally thermalized model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the elliptic flow of massless particles such as direct photons.Comment: revtex4, 15 pages + 10 embedded EPS figure

    Strength Modeling Report

    Get PDF
    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements

    The effects of shock waves on meteorites Final report

    Get PDF
    Shock wave effects on iron and iron-nickel alloys in meteorites analyzed by phase diagrams and residual effects due to shock loadin

    Non-Langevin behaviour of the uncompensated magnetisation in nanoparticles of artificial ferritin

    Full text link
    The magnetic behaviour of nanoparticles of antiferromagnetic ferritin has been investigated by 57Fe Mossbauer absorption spectroscopy and magnetisation measurements, in the temperature range 2.5K-250K and with magnetic fields up to 7T. Samples containing nanoparticles with an average number of Fe atoms ranging from 400 to 2500 were studied. The value of the anisotropy energy per unit volume was determined and found to be in the range 3-6 10**5 ergs/cm3, which is a value typical for ferric oxides. By comparing the results of the two experimental methods at large field, we show that, contratry to what is currently assumed, the uncompensated magnetisation of the feritin cores in the superparamagnetic regime does not follow a Langevin law. For magnetic fields below the spin-flop field, we propose an approximate law for the field and temperature variation of the uncompensated magnetisation which has so far never been applied in antiferromagnetic systems. This approach should more generally hold for randomly oriented antiferro- magnetic nanoparticles systems with weak uncompensated moments.Comment: 11 pages, 11 figure
    • …
    corecore