
F ina l  Report 

Prepared for: 

HEADQUARTERS 
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON, D.C. 20546 CONTRACT NASr-49(24) 

https://ntrs.nasa.gov/search.jsp?R=19680020843 2020-03-12T10:18:24+00:00Z



June 30, 7968 

Fina l  Report 

T H E  EFFECTS O F  S H O C K  WAVES ON M E T E O R I T E S  

Prepared for: 

HEADQUARTERS 
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON, D.C. 20546 CONTRACT NASr-49(24) 

B y :  J. Y. WONG P. S. D E  C A R L 1  

S R I Project PGU-6 7 05 

Approved: RONALD K .  LINDE, CHAIRMAN 
Shock and High Pressure Physics Department 
Poulter Laboratory 

MARJORIE W. EVANS, DIRECTOR 
Poulter Laboratory for High Pressure Research 

Copy No. ... 



CONTENTS 

List of Figures and Tables 

Introduction 

Summary 

I. Phase Diagrams 

A. Introduction and Background 

B. Experimental Studies 

1. Outline 

2. Experimental Methods 

a. Testing of New Experimental Method 

b. Q -b Transition of Iron 

c. Temperature Calibration 

d. Pressure Necessary for Complete Transformation 
of Q - to E -iron 

3. Experimental Results 

a. Testing of New Experimental Method 

b. (y -b c Transition of Iron 

c. Temperature Calibration 

d. Pressure Necessary for Complete Transformation 
of ry - to Q -iron 

4. Discussion 

C. Conclusions and Recommendations for Further Research 

11. Recovery Experiments 

A. Introduction 

B. Shock Loading Experiments 

C .  Metallographic Studies 

1. Karee Kloof 

2. Iron - 2.5% Silicon 

3. Hoba 

D. Hardness and Annealing Studies 

E. 
Pub1 icat ions 

Conclusions and Recommendations for Further Research 
I I I. 
References 

~ 

iii 

1 

6 

8 

8 

19 

19 

20 

20 

22 

23 

24 

27 

27 

27 

29 

31 

32 

42 

45 

45 

45 

48 

48  

48 

50 

50 

53 

56 

5 8  

ii 



FIGURES 

1 

2 

3 

4 

5 

6 

7 .  

8 

9 

10 

11 

12 

13 

14 

15 

16 

Piezoresistive Behavior of Iron in the Phase Transition 
Region 
Pt = Transition Pressure 

Iron Wire Used as Piezoresistive Element in Insulating Medium 

Shock Wave Profiles (a) With Attenuation and (b) Without 
Attenuation 

Determination of c -b a Transition Pressure of Iron; (a) 
Manganin Gage Record, (b) Iron Shecimen Record 

Eddy Current Transient Associated with 01 -b 

Transition of Iron. Horizontal Scale = 0 . 2  psec/cm; Initial 
Peak Pressure in Iron Specimen = 190 kbar 

Determination of E -b r ) ~  Polymorphic Transition Pressure of 
Iron Using Eddy Current Transients; (a) Nanganin Gage Record, 
(b) Iron Specimen Record 

Polymorphic 

Eddy Current Transient Associated with Shock Demagnetization 

Expl osive Assembly 

Target Construction Showing Detailed Installation of 
Piezoresistive Elements in Lucalox Ceramic 

10 

11 

14 

15 

17 

18 

19 

21 

22 

Heating Assembly for Obtaining Relative Resistance of Iron 
as a Function of Temperature 25 

Circuit Diagram of High Current Power Supply 26 

(a) Manganin Gage Record Showing Pressure Ramp from 184 kbar 
to 112 kbar; (b) Iron Resistivity Record from 184 kbar to 112 
kbar 29 

Relative Resistance of Iron and Nickel as a Function of Shock 
Stress 31 

Relative Resistance of Iron as a Function of Temperature 32 

Relative Resistance of Iron as a Function of Heating Current 
Duration at (a) 35 amp and (b) 40 amp 33 

Temperature of Iron Specimen as a Function of Heating 
Current Duration 

iii 

34 



Figures (continued) 

17 Double Shock Method f o r  Monitoring Completeness of 3 E 
Trans i t ion  of Iron. Upper Trace : Manganin Gage Record; 
Lower Trace : I ron R e s i s t i v i t y  Record 35 

18  (a) Karee Kloof Control;  (b) Karee Kloof a f t e r  35 kbar shock; 
. , ( c )  Karee Kloof a f t e r  70 kbar shock; (d) Karee Kloof a f t e r  

49 90 kbar shock 

TABLES 

I Results of Pressure Ramp Experiments 

I1 R e s i s i t i v i t y  Data of I ron and Nickel under Shock Loading 

I11 Recovery Experiments 

IV Annealing Response of Hardness of Shocked Speciments 

28 

30 

47 

54 

i v  



INTRODUCTION 

Shock Effects i n  Meteorites--General 

Meteori tes  a r e  genera l ly  considered t o  be fragments of one or more 

parent bodies t h a t  formed e a r l y  i n  the h i s to ry  of the s o l a r  system. 

Measurements of var ious i s o t o p i c  r a t i o s  i n d i c a t e  t h a t  the  oldest meteor- 

ites, which include m o s t  of the  i ron-nickel  meteorites, s o l i d i f i e d  about 

4.5 x loQ years  ago. 

meteori tes  i nd ica t e  t h a t  these meteorites cooled from 700' t o  300'C a t  

r a t e s  which range f r o m  O.4'C/1O6 years  t o  4OoC/1O6 yea r s ,  

r a t e s  may be in t e rp re t ed  a s  i nd ica t ing  t h a t  i ron  meteori tes  represent  

Studies  of n icke l  d i f fus ion  p r o f i l e s  i n  i ron-nickel  

These cool ing 

por t ions  of cores of d i f f e r e n t i a t e d  bodies of a s t e r o i d a l  s i z e .  A l t e r -  

na t ive ly ,  one may suggest t h a t  t he  iron-nickel meteorites were a t  

var ious depths i n  a mantle of one or more bodies of planetary s i z e .  In  

any case,  c o l l i s i o n s  or explosions,  and consequently shock waves, a r e  

usual ly  invoked a s  the  explanation for break-up of meteori te  parent 

bodies i n t o  the small bodies which eventual ly  f a l l  t o  the  e a r t h  a s  

meteori tes .  

One of t h e  motivations for  a d e t a i l e d  study of meteori tes  is  t o  

obta in  evidence t h a t  may be used to  e s t a b l i s h  and t e s t  var ious models of 

the formation and h i s t o r y  of the  s o l a r  system. Laboratory study of t he  

e f f e c t s  of shock waves on me teo r i t i c  minerals provides the da ta  necessary 

t o  d i f f e r e n t i a t e  shock e f f e c t s  from primary f ea tu res  which developed 

wi th in  a meteori te  parent  body. Work on the first pa r t  of the present  

cont rac t  was concerned wi th  e f f e c t s  of shock waves on p lag ioc lase  

f e ldspa r s  and on se l ec t ed  pyroxene and o l i v i n e  specimens. The r e s u l t s  

of the  s t u d i e s  performed during the f i r s t  phase were presented i n  

Quarterly Reports 1, 2, 3, and 4, and i n  the jou rna l  publ ica t ions  l i s ted  

i n  Sect ion 111 of t h i s  r epor t .  

The present  r epor t  is concerned with the e f f e c t s  of shock waves on 

i ron-nickel  phases i n  meteorites. Although the experiments performed 

during the  second p a r t  of the  cont rac t  were concerned pr imari ly  w i t h  

i ron-nickel  meteori tes ,  t he  r e s u l t s  a r e  expected t o  be appl icable  t o  the  
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t he  study of stony-iron meteori tes  and t o  the  study of metal g ra ins  i n  
stony meteori tes .  For t h e  convenience of  the  reader ,  t h i s  r epor t  

includes re levant  experimental da t a  previously reported i n  Quarterly 

Report 5. 

Shock Ef fec t s  i n  I ron and i ts  Alloys--a B r i e f  His tory 

The study of t he  e f f e c t s  of shock waves on i r o n  and i ts  a l l o y s  can 

be t raced  back t o  French m i l i t a r y  s t u d i e s  of t he  mid-nineteenth century.  

Late i n  the n ine teenth  century it was recognized t h a t  Neumann lamellae 

fbands i n  the microstructure  of i ron )  a r e  formed a s  a r e s u l t  of shock 

1oading.l 

may be ind ica ted  by the  f a c t  t h a t  Neumann lamellae,  named a f t e r  the i r  

discoverer ,  were first recognized i n  meteor i tes .  These lamellae have 

The relevance of shock wave s t u d i e s  t o  meteori te  research 

been determined t o  be twin bands, having a I112 I composition plane and 

a < 111 > shear  d i rec t ion . '  
c 

In  1954 Rinehart and Pearson3 published a d e t a i l e d  account of the  

mechanical and meta l lurg ica l  e f f e c t s  of shock waves on metals, i n  which 

much new da ta  were presented along w i t h  a review of e a r l i e r  work i n  t h e  

f i e l d .  They reported a general  co r re l a t ion ,  i n  t he  case  of i ron,  of 

increasing twin dens i ty  w i t h  increas ing  shock pressures .  

reported t h a t  hardness increases  r e s u l t i n g  from shock loading were 

co r re l a t ed  w i t h  twin dens i ty  and t h a t  a r a t h e r  abrupt  increase  i n  

hardness t h a t  was co r re l a t ed  w i t h  an equal ly  abrupt  micros t ruc tura l  

change t o  a very densely banded s t r u c t u r e .  

They a l s o  

In  1956 Bancroft e t  reported the observat ion of a double shock 

wave system which develops i n  i r o n  shocked to  pressures  i n  excess of 

130 kbar.  They in t e rp re t ed  this  double shock system a s  the r e s u l t  of a 

dynamic phase change which took place during the passage of the  shock 

a t  a pressure  of approximately 130 kbzrr. On the b a s i s  of a s impl i f ied  

thermodynamic treatment of the  effect of pressure on the temperature of 

the  o l + y  phase t r a n s i t i o n ,  they suggested t h a t  the dynamic t r a n s i t i o n  

was probably a! -I 7. However, subsequent thermodynamic ca l cu la t ions  by 

Curran and De C a ~ - l i , ~  by Jamieson,6 and by Kaufman,' which d i f f e r e d  i n  

d e t a i l  from one another,  a l l  agreed i n  p red ic t ing  that pressures  i n  the  

range 150-170 kbar should be required f o r  the a! 3 y t r a n s i t i o n  t o  occur 
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a t  temperatures i n  t h e  range of 20' t o  100'C. 

metallographic study, Curran e t  a l .*  reported t h a t  t h e  appearance of the 

heavi ly  banded microstructure  i n  shocked i r o n  was correlated w i t h  

pressures  i n  excess of 150 kbar. This microstructure ,  described a s  

"transformation twinned" was "a t t r ibu ted  t o  the shock induced 01 3 y 
phase t r a n s i t i o n  which reversed on r e l ease  of pressure.  

In  a subsequent 

In  1962 Ful l e r  and P r i ceg  reported an abrupt  increase  i n  the 

dynamic e l e c t r i c a l  r e s i s t i v i t y  of i ron  a t  a shock pressure of 150 kbar. 

In  the  same year  Johnson e t  a1.l' suggested, on the b a s i s  of metallog- 

raphic  evidence, that the  dynamic phase t r a n s i t i o n  was a c t u a l l y  t o  a 

phase o ther  than Cy. 

t r a n s i t i o n  i n  i r o n  occurs abrupt ly  and is  complete a t  a pressure of 

130 kbar. 

by Curran e t  a l .  was disregarded.  

reported by e a r l i e r  workers, including Rinehart  and Pearson,3 Tardif  

e t  al.;' Dieter ,  l 2  and Zukas and Fowler, 13 indica tes  t h a t  t he  dynamic 

In  t h e i r  work they assumed t h a t  the  dynamic phase 

The cont rad ic tory  evidence presented by Fu l l e r  and P r i ce  and 

Indeed, a c9 re fu l  study of r e s u l t s  

phase t r a n s i t i o n  is probably smeared out  over a 30- t o  50-kbar range 

of pressures .  

By 1962 a c t i v e  research  on the e f f e c t  of shock waves on i ron  and its 

a l l o y s  had v i r t u a l l y  ceased. 

using t h e  techniques then ava i lab le ,  was not l i k e l y  t o  y i e ld  much new 

information. Although many workers i n  the f i e l d  p r iva t e ly  expressed 

reserva t ions  concerning the  r e s u l t s  of Johnson e t  a l . ,  no publ ic  con- 

t roversy a rose .  Within our own labora tory  the dec is ion  was made t o  l e t  

the Johnson e t  a l .  r e s u l t s  s tand unchallenged u n t i l  a res tudy of the 

dynamic behavior of i r o n  could be made with g r e a t l y  increased prec is ion .  

I t  had become evident  that f u r t h e r  research, 

In  1964 Takahashi and Basset,14 using s t a t i c  high pressure X-ray 

d i f f r a c t i o n  techniques, pos i t i ve ly  i d e n t i f i e d  a close packed hexagonal 

f phase of i r o n  which is formed near  130 kbar and which is not  r e t a ined  

on r e l a s e  of pressure t o  1 atmosphere. Since t h a t  t i m e  most workers i n  

the high pressure f i e l d  have assumed t h a t  the phase t r a n s i t i o n  in fe r r ed  

from shock wave s t u d i e s  is  i d e n t i c a l  with t h e  s t a t i c a l l y  observed 

CC + F transformation and that the  shock wave t r a n s i t i o n  occurs abrupt ly  
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a t  a pressure of 130 kbar.  

pressure-temperature (P,T) phase diagram of i ron  was accura te ly  deter- 

mined i n  the shock compression study of Johnson e t  a l . ,  and t h i s  phase 

diagram has been used t o  obta in  c a l i b r a t i o n  poin ts  for  s t a t i c  high 

pressure s tud ie s .  

I t  has a l s o  been assumed t h a t  t h e  equi l ibr ium 

During t h e  pas t  few years  t h e r e  has been a r ev iva l  of i n t e r e s t  i n  

the  e f f e c t s  of shock waves on metals, w i t h  p a r t i c u l a r  emphasis on the 

e f f e c t s  of shock waves on me teo r i t i c  i rons .  

i n t e r p r e t  the changes i n  microstructure  and mechanical proper t ies  t h a t  

r e s u l t  from the  shock loading of me teo r i t i c  nickel- i ron a l loys ,  i t  is  

necessary t o  consider  the p o s s i b i l i t y  of shock-induced phase t r a n s i t i o n s .  

The metallographic changes observed i n  the  kamacite phase of shocked 

meteori tes  a r e  s imi l a r  t o  the  changes observed i n  shocked i ron  and low 

carbon steels. I t  is  genera l ly  assumed t h a t  kamacite, l i k e  pure iron, 

In  order  t o  adequately 

transforms during shock compression t o  a c lose  packed hexagonal F 

phase. The heavi ly  banded kamacite microstructure  observable i n  some 

"as found" meteori tes  (e.g. ,  Grant) and i n  meteor i tes  which have been 

subjected to  labora tory  shocks t o  pressures  of 200 kbar or higher,  is  

var iously r e fe r r ed  t o  a s  t he  "F s t r u c t u r e , "  t he  "c transformation 

s t r u c t u r e , "  or the "matte s t ruc tu re .  

of the behavior of i ron-nickel  a l l o y s  under shock loading depends 

heavi ly  on t h e  v a l i d i t y  of the Johnson et a l .  study of i ron  a s  wel l  a s  

11 Unfortunately, cur ren t  knowledge 

on the cu r ren t ly  fashionable  view t h a t  the  dynamically in fe r r ed  and 

s t a t i c a l l y  observed high pressure transformations of i ron  a r e  i d e n t i c a l .  

The v a l i d i t y  of the  assumption used i n  the  Johnson e t  al. work t h a t  

the boundary separa t ing  zones of d i f f e r e n t  micros t ruc tura l  changes 

corresponded t o  the l i n e  a t  which the pressure i n  the second shock wave 

of t h e  double shock system dropped t o  the phase t r a n s i t i o n  pressure,  

130 kbar a t  300°K, was f i n a l l y  challenged i n  the  open l i t e r a t u r e  l a t e  i n  

1965 by the  work of Nivikov e t  a1.15r16 

pos i t ion  of the zone boundary corresponds t o  a l e v e l  of pressure i n  the  

second wave higher than the phase t r a n s i t i o n  pressure.  

t o  repeat  the Johnson e t  a l .  work by studying the  dynamic (a, e) phase 

l i n e  of A r m c o  i ron  using the  "capacitor" method f o r  de t ec t ing  the two-wave 

These authors  argued t h a t  the  

They attempted 
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system that forms i n  i ron  above t h e  phase t r a n s i t i o n  pressure.  However, 

t h e i r  da ta  show considerable  s c a t t e r  and do not  appear t o  c o r r e l a t e  with 

the r e s u l t s  of previous workers. We have se r ious  doubts about the 

accuracy of t h e i r  experimental  method and w e  t ake  exception t o  t h e i r  

view that the  dynamically in fe r r ed  and s t a t i c a l l y  determined (P, T )  

phase diagrams of i r o n  should be i d e n t i c a l .  

A t  the s t a r t  of the present  program it  was becoming genera l ly  

evident  t o  high pressure researchers  that f u r t h e r  work on t h e  shock wave 

induced phase t r a n s i t i o n  i n  i ron  was needed. The d iscrepancies  among 

shock wave t r a n s i t i o n  pressures  reported by d i f f e r e n t  workers were too  

l a rge  t o  be ignored. It  a l s o  became c l e a r  t h a t  s u b s t a n t i a l  progress 

could be made not by repea t ing  the  pioneering experiments on the i ron  

t r ans i t i on ,  but  r a t h e r  only by tak ing  advantage of new techniques of 

shock wave measurement. 
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SUMMARY 

The primary objec t ive  of the s tudy was t o  analyze the  e f f e c t s  of 

shock waves on the m e t a l l i c  minerals i n  meteorites, namely i r o n  and 

i ron-nickel  a l l o y s .  The s tudy was divided i n t o  t w o  p a r t s :  Pa r t  I was 

coke rned  wi th  the  inves t iga t ion  of temperature pressure dynamic phase 

diagrams. P a r t  I1 was devoted t o  the s tudy of r e s i d u a l  e f f e c t s  caused 

by the  shock loading of i r o n  and i ron-nickel  a l loys ,  emphasizing 

experiments on se l ec t ed  meteoritic mater ia l .  

The first por t ion  of Pa r t  I concentrated pr imari ly  on the t e s t i n g  

of a new experimental method f o r  determining the CL 3 E t r a n s i t i o n  

pressure of i ron,  which could lead t o  high accuracy, combined with a 

s u b s t a n t i a l  saving of t i m e  and e f for t  i n  determining the  dynamic 'fP, T)  

phase diagram of i r o n  and i ron-nickel  a l loys .  

t h i s  method it was discovered t h a t  

automatical ly  r eve r t  t o  

Pressure r e l e a s e  was 36 kbar/wec beyond the  t i m e  of passing through the 

01 t3 F t r a n s i t i o n  p res su re ) ,  Although t h i s  highly s i g n i f i c a n t  discovery 

does not r u l e  out  completely the workabi l i ty  of t h e  new method, i t  

appears t h a t  a more conventional r e s i s t i v i t y  technique is a better method 

f o r  studying dynamic temperature-pressure phase diagrams of i r o n  and 

i ron-nickel  a l l o y s ,  

During the t e s t i n g  of 

€-iron, once formed, does not 

a-iron upon pressure r e l e a s e  (experimental 

The second por t ion  of Pa r t  I was devoted t o  a c a r e f u l  r e inves t iga t ion  

of the dynamic response of Ol-iron t o  shock loading using an improved 

technique f o r  measurement of electrical  r e s i s t i v i t y  during shock com- 

pression. This i nves t iga t ion  yielded da ta  that are i n  s u b s t a n t i a l  d i s -  

agreement w i t h  the phase t r a n s i t i o n  r e s u l t s  obtained by Fu l l e r  and Pr ice .  

However, the  present  da ta  are cons i s t en t  w i t h  the s t a t i c  data  of Balchan 

and Drickamer. Moreover, the present  dynamic da ta  reso lve  fo r  the  f i r s t  

t i m e  the discrepancy between the observat ion of three s t a b l e  shocks i n  

i ron  s t a r t i n g  a t  130 kbar by Bancroft e t  a l .  and the  evidence by t w o  
recent  i nves t iga t ions  by Curran and by Katz e t  a l .  tha t  the shock 

pressure required t o  produce the  metallographic %atte" appearance 

assoc ia ted  with the 130-kbar dynamic t r a n s i t i o n  may be -155 kbar. A 
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c r i t i c a l  comparison between the present  techniques and those used by 

Fu l l e r  and Price led t o  the conclusion that the present  da ta  are more 

r e l i a b l e .  I t  is  believed that the present  i nves t iga t ion  has s i g n i f i c a n t l y  

increased the l e v e l  of understanding of the dynamic t r a n s i t i o n  of CL -iron 

t o  .high pressure  phases. 

A r e s i s t ance  hea t ing  technique for  varying the i n i t i a l  temperature 

of i ron  or i ron-nickel  a l l o y  specimens used a s  p i ezo res i s t i ve  elements 

i n  r e s i s t i v i t y  techniques for s tudying polymorphic t r a n s i t i o n s  has been 

successfu l ly  developed i n  th i s  project. This development includes the 

c a l i b r a t i o n  between the temperature and the amplitude and dura t ion  of 

the  hea t ing  cur ren t  f o r  i ron .  

Another technique developed during th i s  p ro jec t  u t i l i z e s  the shock- 

induced t r a n s i e n t  demagnetization eddy cur ren t  sp ike  for monitoring the 

completeness of polymorphic t r a n s i t i o n s  involvfng a magnetic phase. 

new technique fu rn i shes  a very use fu l  supplementary t o o l  to  the  conven- 

t i o n a l  r e s i s t i v i t y  techniques i n  the  s tud ie s  of phase t r a n s i t i o n s  of i ron  

and i ron-nickel  a l l o y s .  

This  

Pa r t  11 of t h i s  program was concerned w i t h  the study of permanent 

shock-induced damage i n  meteorites e Samples of iron-2.5$ s i l i c o n  

s ing le  c rys t a l s ,  the Karee Kloof coarse  oc tahedr i te ,  and the Hoba 

a t a x i t e  were shocked t o  pressures  ranging from 35 kbar t o  480 kbar. 

For 35-, 70-, and 90-kbar experiments, the major effect of shock waves 

on the iron-2.5$ s i l i c o n  and Karee Kloof kamacite was twinning. 

dens i ty  of shock induced twins increased wi th  increas ing  pressure.  The 

235- and 480-kbar specimens of i ron-s i l icon  and Karee Kloof kamacite 

showed the "matte" microstructure ,  which is genera l ly  considered t o  be 

evidence of a shock induced phase transformation. Specimens of shock 

loaded Hoba were only marginally d is t inguishable  from con t ro l  specimens. 

Hardness and anneal ing s t u d i e s  were also performed on the shocked 

samples 

The 
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I .  PHASE DIAGRAMS 

A.  Introduct ion and Background 

The pressure-temperature phase diagram of i ron  has been inves t iga ted  

by s t a t i c  high pressure  techniques and by dynamic high pressure (shock 

wave compression) techniques.  S t a t i c  high pressure  measurements of 

i ron  phase e q u i l i b r i a  have been conducted i n  a pressure-temperature 

region i n  which pressure c a l i b r a t i o n s  a r e  highly uncertain.  

ava i l ab le  dynamic (shock wave) data  have been used t o  obta in  c a l i b r a t i o n  

points  for  s t a t i c  high pressure apparatus .  The impl i c i t  working hypo- 

t h e s i s  has been t h a t  dynamic phase t r a n s i t i o n s  occur a t  pressure-tempera- 

t u r e  equi l ibr ium po in t s .  T h i s  hypothesis has not y e t  been proven for 

any mater ia l ,  and i t  has been f a l s e  i n  many c a s e s , l 7  

Consequently, 

A phase t r a n s i t i o n  can be detected by dynamic measurement techniques 

only i f  a f i n i t e  por t ion  of the mater ia l  under observat ion transforms 

during t h e  few microseconds ava i l ab le  for observat ion.  To provide s u f f i -  

c i e n t  d r iv ing  force for t h i s  p a r t i a l  transformation t o  occur i n  such 

l imi ted  time, a pressure i n  excess of equi l ibr ium may be required.  Most 

shock wave measurements have one-dimensional shock propagation geometries; 

the  ma te r i a l  under inves t iga t ion  is  therefore  subjected to  plane s t r a i n  

a s  opposed t o  hydros ta t ic  s t r a i n  i n  i d e a l  s t a t i c  high pressure experi-  

ments. For a mater ia l  w i t h  f i n i t e  y i e ld  s t r e s s  under shock compression, 

the  dynamic compression curve (Hugoniot) w i l l  exceed the hydros ta t ic  

value a t  a given s t r a i n  by two-thirds the  y i e ld  s t r e s s .  One might there-  

f o r e  expect a s i m i l a r  o f f s e t  i n  dynamic phase t r a n s i t i o n  pressures  r e l a -  

t i v e  t o  equi l ibr ium pressures .  On the  other  hand, some phase t r a n s i t i o n s  

may be k i n e t i c a l l y  aided by non-hydrostatic s t r a i n  or by the  high s t r a i n  

r a t e s  ava i l ab le  i n  shock compression experiments. It would appear t h a t  

r e l a t ionsh ips  between dynamically determined phase t r a n s i t i o n s  and 

equi l ibr ium phase boundaries must be determined empir ica l ly  f o r  ind iv idua l  

mater ia l s .  From cons idera t ions  of phase transformation k ine t i c s ,  the 

t r a n s i t i o n  pressure determined by shock wave techniques should i n  most 

cases  be an upper bound on t h e  equi l ibr ium ( s t a t i c )  t r a n s i t i o n  pressure.  
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Since the  shock h i s t o r y  of f a l l e n  meteorites is  dynamic, r a t h e r  

than s t a t i c ,  the  dynamic pressure-temperature phase diagrams of 

me teo r i t i c  ma te r i a l s  a r e  the  appropr ia te  ones t o  u s e  i n  the study of 

shock effects on meteorites 

It i s  genera l ly  believed, t h a t  the most accura te  equi l ibr ium 

( "s ta t ic" )  pressure-temperature (P,T) phase diagram of i ron  is  t h a t  

obtained by Bundy,18 using s t a t i c  high temperature and high pressure 

r e s i s t i v i t y  techniques.  He ca l ib ra t ed  his  apparatus  w i t h  respec t  t o  

the t r i p l e  point  (CY, y, E )  of i ron  a t  110 kbar and 500'C obtained by 

Johnson e t  a1.l' i n  the i r  shock compression experiments. 

work it was poss ib l e  t h a t  some r e c r y s t a l l i z a t i o n  i n  t h e  recovered spec i -  

mens may have occurred that was unrelated t o  the d i f f e r e n t  microstructures  

achieved upon shocking i n i t i a l l y  &iron i n t o  t h e  pressure-temperature 

f i e l d  on both sides of the  t r i p l e  point  (dr iv ing  the  mater ia l  i n t o  t h e  

€-phase below 500'C and i n t o  the 

loca t ion  of t he  t r i p l e  point  (CY, y,  E )  of i ron  a t  110 kbar and 500'C i n  

the  (P,T) phase diagram a s  reported by Johnson e t  a1.I' might not be 

accurate .  Although Bundy's phase diagram of i r o n  includes the 130-kbar 

and 37'C CY * E t r a n s i t i o n  point  es tab l i shed  by Bancroft e t  a i 4  and by 

Perez-Albuerne e t  a1.,19 it  is  i n  marked disagreement w i t h  the  dynamic 

high pressure r e s i s t i v i t y  da t a  of Fu l l e r  and Pr ice ,9  who placed the  

01 + E  polymorphic t r a n s i t i o n  of i ron  a t  150 kbar and -100'C. In view 

of the  discrepancy i n  t r a n s i t i o n  pressures  i t  i s  important t o  r e inves t i -  

In  t h e  l a t t e r  

y-phase above 500'C). Hence the 

.I# -4. 

gate  the dynamic high temperature and high pressure  phase diagram of 

i r o n  using more prec ise  techniques of measurement than were ava i l ab le  

t o  Johnson e t  a1.l' 

It  has been reported18j2'  that  t h e  r e s i s t i v i t i e s  of CY-, E-, and 

y-iron have roughly t h e  r a t i o  of 1:2:5 a t  room temperature and 

atmospheric pressure  and that they possess l a r g e  temperature c o e f f i c i e n t s  

but  r e l a t i v e l y  small  pressure c o e f f i c i e n t s .  Thus, a s  explained below, 

'Bancroft e t  a1.4 and Fu l l e r  and Pr ice9  a c t u a l l y  assoc ia ted  the dynamic 
t r a n s i t i o n  they observed w i t h  the  s t a t i c  
However, most workers i n  the f ie ld6,14 cu r ren t ly  i d e n t i f y  the observed 
dynamic t r a n s i t i o n  w i t h  t he  s t a t i c  

.I. 

01 + y  t r a n s i t i o n  of i ron .  

CY -b E t r a n s i t i o n  of i ron .  
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by using a t h i n  i ron  wire as  a p i ezo res i s t i ve  element ( s imi l a r  t o  t h e  

manganin 

pressures  assoc ia ted  w i t h  polymorphic t r a n s i t i o n s  of i ron  by measuring 

the  r e s i s t i v i t y  of the  w i r e  a s  a funct ion of pressure  and de tec t ing  t h e  

abrupt changes i n  r e s i s t i v i t y  which occur a t  phase t r a n s i t i o n s  (see 

Fig. 1). 

* pressure t ransducer) ,21 it is possible  t o  determine the  

e’ - iron 
I 
I 

P b  

P 
G A -  6101-23 

FIG. 1 PlEZORESlSTlVE BEHAVIOR OF IRON 
IN THE PHASE TRANSITION REGION 
P, = Transition Pressure 

The r a t i o  of the  r e s i s t i v i t i e s  of the transformed and o r i g i n a l  

phases may not be the same a s  t h a t  determined s t a t i c a l l y ,  s ince  the 

presence of shock induced defects may change the r e s i s t i v i t y  of both 

phases. Furthermore, a d i scon t inu i ty  i n  r e s i s t i v i t y  would a l s o  r e s u l t  

from a p a r t i a l  transformation, and the r e s i s t i v i t y  r a t i o  would depend 

on the completeness of the transformation. Fu l l e r  and Price’ reported 

t h a t  the r a t i o  of the  dynamic r e s i s t i v i t i e s  of t h e  transformed and 

o r i g i n a l  phases agreed f a i r l y  w e l l  w i t h  t h a t  determined s t a t i c a l l y  

i n  the  pressure range from 0 t o  350 kbar. They a l s o  reported t h a t  the 

r e s i s t i v i t y  of 

0 t o  150 kbar. 

o! -iron does not vary appreciably w i t h  pressure from 

Thus the i r  r e s u l t s  imply t h a t  t h e  r e s i s t i v i t i e s  were 

‘:’Manganin is an a l l o y  w i t h  nominal composition of 84% Cu, 12% I n ,  and 
4% Hi. 
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not a l t e r e d  appreciably by t h e  presence of shock induced defects and that 

t h e  bulk of 

shocked t o  pressures  only s l i g h t l y  above the t r a n s i t i o n  pressure.  

Or-iron had undergone t ransformation t o  the new phase when 

To estimate the temperature of the i ron  w i r e  a t  the phase t r a n s i t i o n ,  

it is necessary t o  correct for  the generat ion of heat  by shock compression. 

Because the r e s i s t i v i t y  of i r o n  depends on pressure  and temperature, among 

o ther  f a c t o r s ,  an  independent measurement must  be employed t o  obta in  the 

pressure i n  the i ron  specimen. Using a manganin gage f o r  pressure c a l i -  

brat ion,  F u l l e r  and Pr ices  reported a t r a n s i t i o n  i n  

and - 100°C. Ol-iron a t  150 kbar 

The conf igura t ion  and dimensions of the i ron  specimen used i n  the  

present  p i e z o r e s i s t i v i t y  s t u d i e s  a r e  shown i n  Fig .  2.  

of i ron  specimens i n  t a r g e t s  is described i n  d e t a i l  i n  Sect ion B-2-a, 

below.) 

(The i n s t a l l a t i o n  

The i r o n  w i r e  used is 99.99% pure and 0.003'' i n  diameter.  The 

INSULATING MEDIUM 

SPOT WELDS 

' 1/16" diam 
MAGNESIUM 

' 0.003" diam 
IRON WIRE 

BOTTOM VIEW 

LEADS 

SIDE VIEW 
G A - ~ l 0 5 - 2 4  

FIG.2 IRON WIRE USED AS PIEZORESISTIVE ELEMENT IN INSULATING MEDIUM 
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* p iezo res i s t i ve  element has fou r  poles, A, B, C, and D, soldered t o  

four  1/16" diameter magnesium leads and is imbedded i n  an in su la t ing  

medium. During t h e  shock experiment a constant  cur ren t  pulse is appl ied  

across  the outer  terminals  A and D, and t h e  r e s i s t i v i t y  of the i r o n  

specimen is monitored by measuring the  vol tage across  the  inner  terminals  

B and C. Thus, by applying shocks of d i f f e r e n t  magnitudes t o  the speci-  

men, t he  r e s i s t i v i t y  of the  i ron  specimen a s  a funct ion of pressure can 

be obtained. 

The i n i t i a l  temperature of the i ron  specimen may be var ied by 

preliminary r e s i s t ance  heat ing.  By varying the amplitude and dura t ion  

of the  heat ing cur ren t ,  the i n i t i a l  temperature of the i ron  specimen 

can be s e t  a t  any temperature up t o  i ts  melting poin t .  The temperature 

can be ca l ib ra t ed  w i t h  respect  t o  the  amplitude and dura t ion  of t he  

heat ing cur ren t  by measuring a t  atmospheric pressure the r e s i s t i v i t y  of 

the  specimen a t  var ious temperatures ( a s  determined by a thermocouple) 

and observing the amplitude and dura t ion  of the heat ing cur ren t  needed 

t o  reproduce the  same values of r e s i s t i v i t y  a t  these  temperatures 

(see Sect ion B-2-12). 

Thus, by s t a r t i n g  w i t h  a-iron wire used a s  a p i eao res i s t i ve  

element imbedded i n  an appropr ia te  i n s u l a t o r  such a s  Lucalox ceramic t 
and varying i ts  i n i t i a l  temperature, the (a, c )  and (a, 7 )  phase l i n e s  

of the  dynamic (P,T) phase diagram of i r o n  can be obtained. 

temperature rise due t o  shock heat ing must be estimated independently. 

T h i s  rise is small, however, s ince  the  pressures  involved a r e  not  very 

high (< 150 kbar ) .  

heat ing for  i r o n  s ing ly  shocked t o  130 kbar has been estimated t o  be 

Only the 

For example, the temperature rise due t o  shock 

*: Ful le r  and Prices  used a two-pole configurat ion i n  the i r  experiment. 
With the  two-pole configurat ion the accuracy of measurements can be 
g rea t ly  a f f ec t ed  by contac t  r e s i s t ance .  With the  four-pole configura- 
t ion ,  a s  used i n  the  present  experiments, the uncer ta in ty  i n  r e s i s t ance  
due t o  contac t  r e s i s t ance  is neg l ig ib l e .  

A General Electric Company brand name for  po lyc rys t a l l i ne  alumina 
( p  = 3.98 g/cm3), 2 2  which has a shock impedance close t o  t h a t  of 
i ron  i n  the  pressure range 0 t o  500 kbar. 
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less than ~ O O C . ~ , ~ '  

be estimated w i t h  f a i r  accuracy up t o  about 130 kbar, using e x i s t i n g  

ca l cu la t ion  methods, 23, 2 4  

The shock temperatures a long the  i ron  Hugoniot can 

Obtaining the  (7, F )  phase l i n e  of t h e  dynamic (P,T) phase diagram 

of i ron  is much more d i f f i c u l t  because of the  small d i f f e rence  i n  

r e s i s t i v i t y  between y- and 

and because one has t o  s t a r t  with y-iron, which i s  s t a b l e  only a t  high 

temperatures (> 900'6 a t  atmospheric pressure)  or high pressures  (-110 

kbar a t  500°C).18 

w i t h  a double shock experiment. In  such an experiment t he  01-iron is  

first heated t o  500'C (or above) and is then subjected t o  t w o  consecutive 

shocks designed so t h a t  the  f irst  one sends the i ron  i n t o  the  

a t  a temperature only s l i g h t l y  above its i n i t i a l  temperature and t h e  

second shock re in fo rces  the f i r s t  shock and sends the  i ron  i n t o  t h e  

€ - f i e ld .  The abrupt  change i n  r e s i s t i v i t y  which r e s u l t s  from the  phase 

change caused by the second shock can then be de tec ted .  

€-iron a t  temperatures of 5OO0C and above 

However, i t  is  possible  t o  obta in  t h i s  phase l i n e  

y - f i e ld  

The second shock can be most e a s i l y  obtained by r e f l e c t i n g  the f i r s t  

shock off a ma te r i a l  with a higher shock impedance than the  in su la t ing  

medium i n  which the i ron  specimen is imbedded. The magnitude of t h e  f irst  

shock must be of s u f f i c i e n t  s t r eng th  t o  send the (2-iron specimen i n t o  

the y-field. 

changing the amplitude of the f irst  shock. 

The amplitude of the reflected shock can be var ied by 

Any of the above techniques can be employed t o  obta in  t h e  (01, e) ,  

(01, y), and 
n icke l  a l l o y s .  These techniques are t i m e  consuming, however, and hence 

r a the r  c o s t l y  for  phase boundary s tud ie s .  Because only one r e s i s t i v i t y  

pressure point  per  shock experiment 

one genera l ly  must  perform on the  order  of s i x  or more shock experiments 

t o  accura te ly  e s t a b l i s h  the pressure a t  which the jump i n  r e s i s t i v i t y  

occurs, and thus determine one point  i n  the  (P,T) phase diagram. 

(y, E) dynamic (P,T) phase l i n e s  f o r  the various i ron-  

can be obtained by such methods, 

For t h i s  reason t h e  first por t ion  of t h e  p ro jec t  e f f o r t  was devoted 

l a rge ly  t o  the development of a more e f f i c i e n t  experimental method. The 

method t h a t  was devised takes  advantage of the f a c t  t h a t  shock waves 
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generated by t h i c k  high explosive pads have p r o f i l e s  s i m i l a r  to  the  one 

shown i n  Fig .  3 ( a )  ins tead  of that  i n  F ig ,  3 (b) .  

pressure P has been reached, t h e  pressure is a t tenuated  by a rarefac- 

t i o n  wave o r ig ina t ing  from the expanding gases  of the explosive behind 

the i n i t i a l  shock and moving more rap id ly  than the  shock. 

a <means of varying pressure  continuously from Po t o  pressure P i n  

t i m e  to [tee Fig. 3 (a ) ] .  Both Po and to can be varied: Po by 

choosing an appropr ia te  explosive system, and 

of proper geometric design t o  keep any unwanted r a re fac t ions  away from 

the specimen f o r  a s u f f i c i e n t l y  long t i m e .  If Po i s  ad jus ted  t o  be 

g rea t e r  than the  polymorphic t r a n s i t i o n  pressure Pt, and to is 
designed t o  be long enough so that the  pressure decreases t o  

before spurious r a r e f a c t i o n s  reach the specimen, then the abrupt  change 

of r e s i s t i v i t y  accompanying the inverse  t r a n s i t i o n ,  from c t o  CY, for 

example, can be located, and hence the  value of 

i n  a s i n g l e  shock experiment (see Fig. 4) ,  

can be used t o  monitor the  pressure of the i r o n  specimen. From consid- 

e r a t i o n s  of phase transformation k ine t i c s ,  the  t r a n s i t i o n  pressure 

assoc ia ted  w i t h  t he  dynamic inverse  t r a n s i t i o n  should be a lower bound 

on the equi l ibr ium ( s t a t i c )  t r a n s i t i o n  pressure .  

After  the peak 

0 

We then have 

to by bui ld ing  a t a r g e t  

P < Pt 

Pt can be determined 

A manganin pressure gage 

FIG. 3 SHOCK WAVE PROFILES (a) WITH ATTENUATION 
AND (b) WITHOUT ATTENUATION 
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FIG. 4 DETERMINATION OF TRANSITION 
PRESSURE OF IRON; (a) MANGANIN 
GAGE RECORD, (b) IRON SPECIMEN 
RECORD 

Figs. 4 ( a )  and 4 (b) show schematically the  manganin t ransducer  

and i ron  specimen records, respec t ive ly .  A t  t = to the  "viewing" 

cur ren t  i s  turned on; the atmospheric pressure  r e s i s t ances  of the 

manganin gage and i ron  specimens a r e  given by Ro and a ,  r e spec t ive ly ,  

A t  

r a t i o  A R / R 0  of the  manganin gage (corresponding t o  Po > Pt) ,  The 

r e s i s t ance  s t e p  b 

t = t l  the shock a r r ives ,  and i ts  peak pressure is given by the 

i n  the i r o n  record represents  the r e s i s t ance  of the 
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€-iron a t  p ressure  Po. A t  t = t, the pressure experienced by the i ron  

specimen has decreased t o  Pt  (corresponding t o  A Rt/Ro of the  

manganin gage record) and there is an abrupt  change of r e s i s t ance  

(b  -+ c )  i n  t h e  i ron  record. 

abrupt change, Pt 
record. ( W e  have i m p l i c i t l y  assumed that the t r a n s i t i o n  CY- f is 
reve r s ib l e  wi th in  a very short t i m e .  Th i s  has been implied i n d i r e c t l y  

by Erkman .) 25 

Thus, by loca t ing  the pos i t i on  of t h i s  

can be obtained d i r e c t l y  from the manganin gage 

When a magnetic and a nonmagnetic phase a r e  involved i n  a polymorphic 

t r a n s i t i o n ,  a s  i n  the case of the 

i ron ,  there is  another method of monitoring the phase t r a n s i t i o n  a s  a 

funct ion of pressure.  When t h e  specimen is used a s  a p i ezo res i s t i ve  

element the "viewing" cu r ren t  sets up a l a r g e  magnetic f l u x  i n  the 

specimen when the specimen is  magnetic i n  the i n i t i a l  phase. During the 

t r a n s i t i o n  t o  a nonmagnetic phase the magnetic permeabi l i ty  changes 

from a l a rge  value (-lo3 f o r  i ron )  t o  

mater ia l  i n  t he  new phase can no longer support such a la rge  magnetic 

f lux .  The repuls ion  of the  f l u x  from the specimen induces a t r a n s i e n t  

eddy cur ren t ,  which appears a s  a spike i n  the r e s i s t i v i t y  record of the  

specimen. The observat ion of such an eddy cur ren t  spike assoc ia ted  w i t h  

the  CL -+ f t r a n s i t i o n  of i r o n  has r ecen t ly  been reported.26 In t h i s  

reported work the i r o n  specimen was i n  the form of a t h i n  s t r i p  and the  

geometry was the re fo re  one-dimensional. In  the present  work the i r o n  

specimen took the form of a t h i n  wire (three-dimensional geometry) and 

a s imi l a r  t r a n s i e n t  was observed (see Fig.  5 ) .  

exceeds the t r a n s i t i o n  pressure,  and t h e  pressure  i s  allowed t o  decrease 

undisturbed t o  less than Pt, 

transients--one assoc ia ted  w i t h  the CY -+ E and the other w i t h  the 

inverse  f * CY t r a n s i t i o n .  By de tec t ing  the loca t ion  of the second 

CL- (magnetic) and 6- (nonmagnetic) 

-1  i n  a very short t i m e ,  and the  

If t h e  peak pressure 

then  there w i l l  be two such eddy cur ren t  

t r a n s i e n t  i n  the i ron  record, one can obta in  

manganin t ransducer  t r a c e  (Fig.  6 ) .  In  the f i g u r e  t h e  6 3 CY t r a n s i t i o n  

takes  place a t  t = t, , a s  ind ica ted  by the  eddy cur ren t  t r a n s i e n t ,  and 

Pt corresponds t o  A Rt/Ro of the  manganin record. 

Pt from the  accompanying 
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FIG. 5 EDDY CURRENT TRANSIENT ASSOCIATED WITH a-6 POLYMORPHIC 
TRANSITION OF IRON. Horizontal scale = 0.2 ,usec/crn; in i t ia l  peak 
pressure in iron specimen = 190 kbar. 

When a f u l l y  or p a r t i a l l y  magnetized magnetic ma te r i a l  is subjec ted  

t o  a shock the  ma te r i a l  w i l l  be temporarily or permanently demagnetized. 

The r e s u l t a n t  change of magnetization of the  ma te r i a l  s e t s  ttp a t r a n s i e n t  

eddy cur ren t ,  which can be detected e l e c t r i c a l l y  a s  a vol tage spike.  

There a r e  a Q l l e a s t  t h r e e  poss ib le  mechanisms for  demagnetization of a 
magnetic ma te r i a l  by a shock.27 The f irst  one i s  shock induced phase 

change, a s  i n  the  case of i ron  which has been discussed previously.  The 

second one is  shock induced misalignment of magnetic domains dues t o  

s t r a i n  rate e f f e c t s  or l o c a l  microscopic s t r a i n .  The t h i r d  one i s  shock 

induced magnetic anisotropy a r i s i n g  f r o m  the an i so t rop ic  microscopic 

s t r a i n  assoc ia ted  w i t h  the  shock. When a!-(magnetic) i ron  is used as a 

p i e z o r e s i s t i v e  element a s  discussed above, the "viewing" cur ren t  sets 

up a l a rge  magnetic f i e l d  i n  the ma te r i a l  ( i n  t h i s  case the i r o n  w i r e )  

and the l a t t e r  i s  almost completely magnetized. 

cur ren t  of -3 amp the magnetic f i e l d  s e t  up i n  a n  i ron  wire of 0.003'' 

diameter v a r i e s  l i n e a r l y  from ze ro  oers ted  a t  the  cen te r  of the  w i r e  t o  - 300 oersteds a t  i ts sur face .  Since the coers ive  fo rce  of i ron  is 

-1  oersted, and the re  i s  no demagnetization f i e l d  i n  the case  of a 

cur ren t  flowing i n  a wire, the w i r e  w i l l  be, completely magnetized except 

f o r  very small regions near  the cen te r  and along the a x i s  of the w i r e  

For a t y p i c a l  "viewing" 
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FIG. 

GA-6105-29 

DETERM IATION OF POLYMORPHIC TRANSITION i iIESSURE 
OF IRON USING EDDY CURRENT TRANSIENTS; ( a )  MANGANIN 
GAGE RECORD, (b) IRON SPECIMEN RECORD 

where the  magnetic f i e l d  set up by the "viewing" cur ren t  is less than 

1 oers ted .  

eddy cu r ren t s  w i l l  be induced i n  t h e  specimen s imi l a r  t o  those accom- 

panying the CJ!+ e polymorphic transformation even though the magnitude 

of the  shock is w e l l  below t h a t  corresponding t o  the  t r a n s i t i o n  pressure.  

T h i s  demagnetization i s  probably caused by shock induced misalignment of 

magnetic domains or shock induced magnetic anisotropy.  

eddy cur ren t  sp ike  has been detected i n  the  present  work and is shown 

When the  specimen is subjected t o  a shock, demagnetization 

Such t r a n s i e n t  
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i n  Fig. 7 .  

t he  pressure a t  which CL-iron i s  completely transformed i n t o  €- i ron.  

This is done with a double shock experiment, 

tude is sent  i n t o  the  specimen, followed by a second weaker shock. 

a s  long a s  the  magnitude of t he  f i r s t  shock is  not  l a r g e  enough t o  cause 

a complete transformation of CL-iron i n t o  €-iron, t w o  eddy cu r ren t  

sp ikes  w i l l  be observed. 

la rge  enough t o  do so only one eddy cu r ren t  sp ike  caused by t h e  f irst  

shock w i l l  appear.  

demagnetization eddy cur ren t  sp ike  s ince  t h e  

T h i s  demagnetization eddy cur ren t  sp ike  can be used t o  obta in  

A shock of va r i ab le  magni- 

So 

However, when the  magnitude of f i r s t  shock is 

The second weaker shock w i l l  not cause any 

€- i ron is  nonmagnetic. 

B. Experimental S tudies  

1. Outl ine 

The first por t ion  of t h i s  p a r t  of t h e  p ro jec t  was devoted mainly 

t o  the  t e s t i n g  of a more e f f i c i e n t  method f o r  determining the 

t r a n s i t i o n  pressure of i ron ,  a s  discussed i n  Sect ion A. 
CY+ € 

Such a method 
could eventua l ly  lead to  a s u b s t a n t i a l  saving of time and e f f o r t  i n  

determining the  (P,T) phase diagrams of i ron  and i ron-nickel  a l l o y s .  

FIG. 7 EDDY CURRENT TRANSIENT ASSOCIATED 
WITH SHOCK DEMAGNETIZATION IN IRON 
AT 45 kbar 
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The remaining port ion of t h i s  p a r t  of the  p ro jec t  was concentrated on: 

(1) a c a r e f u l  r e inves t iga t ion  of t he  response of 

loading with an improved r e s i s t i v i t y  technique based on the  same 

p r inc ip l e  used by Fu l l e r  and Price;’ 

of varying the  i n i t i a l  temperature of i ron  or i ron-nickel  a l l o y  specimens 

used a s  p i e z o r e s i s t i v e  elements i n  r e s i s t i v i t y  techniques f o r  determining 

polymorphic t r a n s i t i o n  pressures  of these  mater ia ls ;  and (3) t he  deter- 

mination of the  pressure ( a t  one p a r t i c u l a r  temperature) above which 

the  CL-+ E transformation of i ron  i s  complete by designing double shock 

experiments and u t i l i z i n g  the shock induced t r a n s i e n t  demagnetization 

eddy cur ren t  spike.  

(Y-iron t o  shock 

( 2 )  t h e  development of a method 

2. Exper imen t a  1 Met hods 

a .  Test ing of New Experimental Method 

A t o t a l  of f i v e  shock experiments (Shot Nos. 13,252-53, 

13,317-18, and 13,330) were performed i n  order:  

adequate decreasing pressure ramp extending from -190 kbar t o  - 100 

kbar i n  - 2  p e c ;  and ( 2 )  t o  determine the  (Y -+ € t r a n s i t i o n  pressure 

of i ron  by de tec t ing  the t r a n s i e n t  eddy cu r ren t  spike assoc ia ted  with 

the  F + (Y polymorphic t ransformation of i ron .  

(1) t o  generate  an 

The explosive system employed i n  these  f i v e  shock experiments is 

shown i n  Fig. 8. The s p e c i f i c  plane wave generator,  explosives,  and 

d r i v e r  p l a t e  ma te r i a l s  used i n  each ind iv idua l  shock experiment a r e  

summarized i n  Table I (see Sect ion B-3-a). Preliminary experiments 

c i t e d  i n  Progress Report No.  5 showed t h a t  t he  use of C-7 epoxy a s  

in su la t ing  ma te r i a l  i n  the  cons t ruc t ion  of t a r g e t s  leads t o  very high 

shock temperatures i n  t h e  i ron  specimen caused by impedance mismatch. 

Hence, Lucalox ceramic, which has a shock impedance c lose  t o  t h a t  of 

i ron  i n  the  pressure range 0 t o  500 kbar, was used a s  t h e  in su la t ing  

mater ia l  i n  t he  cons t ruc t ion  of a l l  subsequent t a r g e t s .  

Since t h e  r e l e a s e  ad iaba ts  of t h e  explosives used were not known 

well  enough t o  permit an accura te  determination of shock pressures  by 

the  impedance match method, a l l  t a r g e t s  for these  f i v e  shock experiments 

consis ted of a manganin gage f o r  i nd ica t ing  the  pressure,  i n  add i t ion  t o  
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FIG. 8 EXPLOSIVE ASSEMBLY 

an i ron  gage i n s t a l l e d  i n  Lucalox ceramic. The d e t a i l e d  cons t ruc t ion  of 

one of these t a r g e t s  is shown i n  Fig.  9. 

holes were d r i l l e d  i n  a 2" diameter by 1" t h i c k  Lucalox disc w i t h  one 

f ace  ground f l a t  (Fig.  9). The i ron  or manganin gage element (see 

Fig. 2) was f l a t t e n e d  t o  

Lucalox disc with its four  terminals  bent back through the  holes  i n  the 

Lucalox. The gage element was maintained f l a t  on the ground f a c e  of t h e  

Lucalox disc by cementing a Lucalox backing p l a t e  (-0.035'' th ick  and 

ground f l a t  and p a r a l l e l  on both sides) t o  it wi th  C-7 epoxy, as shown 

i n  Fig.  9. The holes  were s t u f f e d  w i t h  amalgam approximately halfway 

up from the bottom t o  insure  good e l e c t r i c a l  contac t  w i t h  the gage 

terminals, and brass  leads  (1/16" diameter) were then in se r t ed  i n t o  the  

holes and secured i n  pos i t i on  with conductive epoxy. Another l aye r  of 

Epon ( R )  epoxy 

the j o i n t s  between the b ras s  leads and the gage terminals .  

Two sets of four  3/32" diameter 

- 0.0015" and la id  on the  ground f a c e  of the  

:;: 
w a s  appl ied  on top of the conductive epoxy t o  s t rengthen 

: $ A  brand name of epoxy manufactured by Shel l  Chemical Company, 
P i t t sburg ,  Cal i forn ia  . 
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FIG. 9 TARGET CONSTRUCTION SHOWING DETAILED INSTALLATION 
OF PlEZORESlSTlVE ELEMENTS IN LUCALOX CERAMIC 

Since the  method we employed t o  i n s t a l l  t he  manganin gage i n  our 

t a r g e t s  (see Fig. 9 )  i s  q u i t e  d i f f e r e n t  from t h a t  commonly used, i n  

which the gages a r e  i n s t a l l e d  e n t i r e l y  i n  C-7 epoxy, a new pressure 

c a l i b r a t i o n  of t h e  manganin gages was necessary. This was done i n  the  

series of gun sho t s  descr ibed i n  the  next s ec t ion  (see Section B-2-b). 
b. CL -t € Trans i t ion  of I ron 

Eight shock experiments (Shot Nos. 13,477-13,484) were 

performed using the  SRI gas gun i n  order  t o  r e inves t iga t e  the  dynamic 

CC -I € t r a n s i t i o n  of i ron  using an improved r e s i s t i v i t y  technique based 

on the same p r inc ip l e  used by Ful le r  and Pr ice  ( see  Sect ion A ) .  The gas 
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gun was used ins tead  of explosives  for  more freedom i n  varying the 

pressure of the shots. W i t h  the except ion of Shot No. 13,482, whose . 
t a r g e t  cons is ted  of one manganin and one i r o n  gage, a l l  the t a r g e t s  of 

the o ther  shots had one n i cke l  gage i n  addi t ion .  Since n i cke l  is known 

t o  have no polymorphic t r a n s i t i o n s  i n  the pressure range 0 t o  500 kbar, 

the n i c k e l  gage was used a s  a cont ro l .  Lucalox ceramic was used a s  the 

in su la t ing  ma te r i a l  i n  a l l  t hese  t a r g e t s ,  and the procedures for the  

cons t ruc t ion  of these t a r g e t s  were exac t ly  the same a s  those described 

previously (see Fig. 9). 

Since the ve loc i ty  of a p r o j e c t i l e  i n  a gun shot can be measured 

accurately,  the shock pressure i n  the t a r g e t  may be obtained by t h e  imped- 

ance match method provided that t h e  Hugoniots of the  t a r g e t  and p r o j e c t i l e  

ma te r i a l s  a r e  ava i l ab le .  

(aluminum and b ras s )  and t a r g e t  mater ia l s  (Lucalox ceramic) a r e  well-known, 

which permitted the pressure c a l i b r a t i o n  of the manganin gage i n s t a l l e d  i n  

Lucalox ceramic i n  the present  series of gun shots .  As pointed out  i n  

Sect ion B-2-a, above, t h i s  c a l i b r a t i o n  is necessary i n  order t o  determine 

t h e  shock pressures  obtained i n  the  previous explosive sho t s ,  

In  t h i s  case the Hugoniots of the p r o j e c t i l e s  

c. Temperature Cal ibra t ion  

I t  was pointed out  i n  Section A t h a t  one of the  advantages of 

using the  r e s i s t i v i t y  technique i n  the  determination of the  dynamic 

high pressure and high temperature phase diagrams of i ron  and i ron-nickel  

a l l o y s  is the  ease of varying the i n i t i a l  temperature of these mater ia l s  

by preliminary r e s i s t ance  heat ing.  In order t o  achieve this ,  the c a l i -  

b ra t ion  between the temperature of these mater ia l s  and the  amplitude and 

durat ion of the hea t ing  cur ren t  must be known. For i r o n  and i ron-nickel  

a l loys ,  which have l a rge  temperature c o e f f i c i e n t s  of r e s i s t i v i t y  a t  

atmospheric pressure,  the temperature of these ma te r i a l s  can be obtained 

from their  r e s i s t i v i t y  i f  t he  l a t t e r  is known a s  a func t ion  of temperature. 

I f ,  i n  addi t ion ,  the r e s i s t i v i t y  of these mater ia l s  is  ca l ib ra t ed  w i t h  

respec t  t o  the  amplitude and dura t ion  of the  heat ing current ,  we have i n  

effect a c a l i b r a t i o n  between the temperature of these mater ia l s  and the  

amplitude and dura t ion  of t h e  hea t ing  cur ren t .  

The r e l a t i v e  r e s i s t ance  ( w i t h  r espec t  t o  room temperature) of i ron  

a t  atmospheric pressure a s  a func t ion  of temperature was obtained by: 

(1) i n s t a l l i n g  the  i ron  specimen a s  a four-terminal p i ezo res i s t i ve  

t ransducer  ( see  Fig. 2 )  between t w o  Lucalox ceramic d i sc s ,  which were 
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bolted toegher with tantalum threaded rods and nuts  and wound w i t h  - 20 f t  of 0.010" diameter manganin heat ing wire (3 q f t ) ,  a s  shown i n  

Fig. 10; 

the temperature of the  Lucalox ceramic discs v ia  r e s i s t ance  heating; 

and (3) monitoring the  r e s i s t ance  of the i ron  specimen a s  its temperature 

was being var ied  by applying a constant  cur ren t  pulse  across  i ts  ou te r  

terminals  and measuring t h e m v o l t a g e  across its inner  terminals  (see Fig.  2). 

The temperature of t h e  Lucalox ceramic, and hence t h a t  of the i r o n  

specimen, was monitored wi th  a chromel-constantan thermocouple. 

(2 )  varying t h e  temperature of the i r o n  specimen by varying 

A constant  high cu r ren t  power supply (35 amp a t  3.5 Kv) with a 

va r i ab le  output dura t ion  c o n t r o l  has been designed and constructed for  

use i n  the r e s i s t a n c e  hea t ing  of the i ron  specimen employed a s  piezo- 

r e s i s t i v e  t ransducers .  The c i r c u i t  diagram of t h i s  u n i t  is shown i n  

Fig. 11. 

d .  Pressure Necessary f o r  Complete Transformation of 01- t o  
€-iron 

Four double shock experiments ( N o s .  13,345, 13,330, 13,253 

and 13,252) u t i l i z i n g  the  shock induced t r a n s i e n t  demagnetization eddy 

current  spike a s  discussed i n  Sect ion A above were performed i n  order t o  

determine the pressure above which the 01 -b F transformation of i ron  is 

complete. Except f o r  shock heat ing the  i ron  specimen was i n i t i a l l y  a t  

room temperature. With the exception of Shot N o .  13,345, t h e  shots have 

been described before (see Table I) .  

a l l  contained one manganin and one i r o n  gage i n s t a l l e d  i n  Lucalox 

ceramic. The cons t ruc t ion  of these t a r g e t s  has been described previously 

(see Fig. 9 ) .  I n  these four  experiments the main shock was always 

followed by a second weaker shock approximately 0.2 p e c  a f t e r  t he  

a r r i v a l  of the main shock. 

weaker shocks equal ly  spaced w i t h  respec t  to  the main shock (see  Fig.  7 ) . )  

T h i s  weak second shock is due t o  the r e f l e c t i o n  of the main shock off the  

t h i n  l aye r  of C-7 epoxy separa t ing  the  Lucalox backing p l a t e  and the gage 

elements ( see  Fig. 9 ) .  

the C-7 epoxy, this  r e f l e c t i o n  is  a r a r e f a c t i o n  wave. 

the  thickness  of the  Lucalox backing p l a t e ,  t h i s  r a r e f a c t i o n  wave is  

The t a r g e t s  of these four  s h o t s  

( In  some cases  the re  were two or more such 

Since Lucalox has a higher shock impedance than 

After  t r ave r s ing  
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r e f l e c t e d  off the explosive gases, which have a lower shock impedance 

than the  Lucalox ceramic, and a compressional wave t r a v e l s  back i n  t h e  

same d i r e c t i o n  a s  the o r i g i n a l  shock, thus g iv ing  rise t o  the  second 

weaker shock. Shot No.  13,345 was designed t o  confirm the  o r i g i n  of 

t h i s  second weaker shock by doubling the thickness  of the  Lucalox 

backing p l a t e  so that the separa t ion  i n  t i m e  between the second shock 

and the main shock should be roughly twice that of the o ther  shots. 

3. Experimental Resul ts  

a .  

The r e s u l t s  of the f i v e  shock experiments a r e  summarized i n  

Tes t ing  of New Experimental Method 

Table I. Despite the f a c t  t h a t  an adequate decreasing pressure ramp 

of 

Table I ) ,  no t r a n s i e n t  eddy cur ren t  spike assoc ia ted  w i t h  t he  

polymorphic t r a n s i t i o n  was observed. F ig .  12 ( a )  shows the  decreasing 

pressure ramp extending from 184 kbar t o  112 kbar.  Fig.  12 (b)  shows 

the  i ron  r e s i s t i v i t y  record.  The demagnetization eddy cur ren t  sp ikes  

caused by shock induced phase change 

beginning of the  record (see Fig. 12 ( b ) ) .  The double spike r e s u l t s  

from the  f a c t  t h a t  for  pressure above the  Hugoniot e l a s t i c  l i m i t  of 

Lucalox (- 120 kbar) two waves were formed i n  Lucalox with the  e l a s t i c  

wave t r ave l ing  f a s t e r  than the  p l a s t i c  wave by Since 

t h e  shock had t o  t r ave r se  the Lucalox backing p l a t e ,  by the  t i m e  t h i s  

shock reached t h e  gage elements i t  separated i n t o  t w o  shocks, thus 

causing the  f e a t u r e  of the double sp ike  i n  the  i r o n  r e s i s t i v i t y  record. 

It can be seen from Fig. 12 (b)  t h a t  no more eddy cu r ren t  sp ike  appears 

a f t e r  the first double spike even though the i n i t i a l  and f i n a l  pressures  

of the pressure ramp a r e  w e l l  above and below, respec t ive ly ,  t he  

cu r ren t ly  believed t r a n s i t i o n  pressure (- 130 kbar) .  

- 2  p e c  dura t ion  has been successfu l ly  generated (Shot No .  13,317, 

E + CC 

(a -b E) can be seen a t  the 

- 2 mm/pec.1° 

b. c1 + E Trans i t i on  of I ron 

The r e s u l t s  of the  e igh t  shock experiments a r e  summarized i n  

Table 11. Some pe r t inen t  r e s u l t s  obtained i n  the  previous f i v e  explosive 

shots (Shot N o s .  13,252-53, 13,317-18, 13,330) a r e  a l s o  incorporated i n  

t h i s  t a b l e .  The r e s i s t i v i t y  data  for both i ron  and n i c k e l  a r e  p lo t t ed  

i n  Fig. 13. 

included i n  t h i s  f i g u r e .  

The r e s i s t i v i t y  da ta  of Fu l l e r  and P r i ce  f o r  iron’ a r e  a l s o  
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FIG. 12 (a) MANGANIN GAGE RECORD SHOWING PRESSURE RAMP 
FROM 184 kbar TO 112 kbar; (b) IRON RESISTIVITY RECORD 
FROM 184 kbar TO 112 kbar 

c. Temperature Cal ibra t ion  

A c a l i b r a t i o n  be$ween the temperature and the amplitude and 

dura t ion  of the heat ing cur ren t  has been obtained f o r  i ron  i n  t h i s  

p ro jec t .  Figure 14 shows the r e l a t i v e  r e s i s t a n c e  a t  atmospheric 

pressure (wi th  respec t  t o  room temperature) of i r o n  a s  a func t ion  of 

temperature. Fig,  15 ( a )  and Fig. 15 (b )  shows the  v a r i a t i o n  of t h e  

i ron  r e s i s t a n c e  a s  a func t ion  of the heat ing cur ren t  dura t ion  a t  cur ren t  

l e v e l s  of 35 amp and 40 amp, r e spec t ive ly ,  Figure 16 shows the 

v a r i a t i o n  of the i r o n  specimen temperature a s  a func t ion  of the heat ing 

cur ren t  dura t ion  a t  cur ren t  l e v e l s  of 40 amp and 35 amp. The curves 
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FIG. 13 RELATIVE RESISTANCE OF IRON AND NICKEL AS A FUNCTION 
OF SHOCK STRESS 

shown i n  Fig.  16 enable one t o  s e t  the  i n i t i a l  temperature of t h e  i ron  

specimen anywhere from room temperature t o  

amplitude and dura t ion  of the  heat ing cur ren t .  

~ 7 2 5 ~ 6  by ad jus t ing  t h e  

d.  Pressure Necessary for  Complete Transformation of CL- t o  
E -iron 

The r e s u l t s  of t he  four  double shock experiments a r e  summarized 

graphica l ly  i n  Fig. 17. Figs.  17 (b) ,  17 (c),  and 17 ( d )  show the  

manganin and i r o n  records a t  pressures  of 121, 150, and 181 kbar, 

respec t ive ly .  I t  can be seen f r o m  these  f i g u r e s  t h a t  the  t r a n s i e n t  

demagnetization eddy cur ren t  spike due t o  the second weaker shock is 

f a i r l y  l a rge  a t  121 kbar, almost disappears  a t  150 kbar, and completely 

vanishes a t  181 kbar.  The f a c t  that the  t r a n s i e n t  demagnetization eddy 

dur ren t  sp ike  due to  the  second shock almost vanishes a t  150 kbar 

ind ica t e s  t h a t  the dynamic E polymorphic t ransformation of i r o n  

is  almost complete a t  t h a t  pressure.  A t  181 kbar the dynamic CL + E 

t r a n s i t i o n  of i ron  is complete, a s  ind ica ted  by the t o t a l  disappearance 

of the  t r a n s i e n t  eddy cur ren t  spike.  
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FIG. 14 RELATIVE RESISTANCE OF IRON AS A FUNCTION OF TEMPERATURE 

Fig. 17 ( a )  shows the  r e s u l t  of Shot No. 13,345, which was designed 

t o  confirm the  o r i g i n  of the  second weaker shock by doubling the thickness  

of the  Lucalox backing p l a t e  (see Fig. 9 )  so t h a t  the  separa t ion  i n  t i m e  

between the  second shock and the  main shock should be roughly twice t h a t  

of the  o ther  shots. T h i s  is  indeed the  case, a s  shown by the f igu re .  

4.  Discussion 

From the r e s u l t s  of the  f i v e  explosive shock experiments described 

i n  Sect ion B-3-a, above, i t  appears t h a t  €-iron, once formed, does not 

r eve r t  automatical ly  t o  & - i r o n  upon pressure r e l ease  through t h e  

t r a n s i t i o n  pressure f o r  a t  l e a s t  1 p e c .  This r e s u l t  is  a t  var iance w i t h  

t h a t  implied i n d i r e c t l y  by Erkman,25 namely t h a t  

instantaneously t o  a- i ron upon pressure r e l ease  t o  atmospheric pressure.  

€- i ron r v e r t s  almost e 
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FIG. 15 RELATIVE RESISTANCE OF IRON AS A FUNCTION 
OF HEATING CURRENT DURATION AT (a) 35 amp 
AND (b) 40 a m p  
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FIG. 16 TEMPERATURE OF IRON SPECIMEN AS A FUNCTION 
OF HEATING CURRENT DURATION 

There a r e  t w o  d i f f e rences  between t h e  present  experiment and t h a t  of 

Erkman's. The f i r s t  one is the  r a t e  of pressure r e l ease .  

present  experiment, the  r a t e  of pressure r e l ease  is 

(from 184 kbar t o  112 kbar i n  - 2  p e c ) .  
i n  Erkman's experiment. However, from considerat ions of transformation 

k ine t i c s ,  t h e  r a t e  of pressure r e l ease  i n  the  present  experiment should 

favor t h e  revers ion  from e- t o  a-iron more than i n  Erkman's experiment 

s ince  the r a t e  is smaller. The second d i f fe rence  is t h e  l e v e l  t o  which 

pressure i s  re leased .  I n  Erkman's experiment t he  pressure was released 

In  t h e ,  

A36 k b a r / p e c  

The r a t e  is many t i m e s  g r ea t e r  
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a l l  the way t o  atmospheric pressure whereas i n  the present  experiment to  - 112 kbar. It appears t he re fo re  that  i t  is the l e v e l  of pressure 

r e l ease  and not  the rate t h a t  governs the revers ion  of 6- to  CY-iron. 

The pers i s tence  of €- i ron upon pressure  r e l e a s e  was observed 

r ecen t ly  i n  a s t a t i c  experiment by Ma0 e t  a1.28 In  t h i s  experiment i t  

was observed by X-ray d i f f r a c t i o n  techniques that €- i ron was s t i l l  

de tec t ab le  t o  a pressure of 80 kbar when the i n i t i a l  pressure (- 180 kbar) 

was re leased  i n  s t e p s  of - 10 kbar. The present  dynamic r e s u l t  is con- 

s i s t e n t  w i t h  t h i s  observat ion.  The only d i f f e rence  is  t h a t ,  whereas the 

b u l k  of t h e  €- i ron was observed t o  have transformed back t o  CY-iron 

by 

that none of the  €- i ron has rever ted  t o  CY-iron during pressure r e l ease  

from 184 kbar t o  112 kbar a t  a r a t e  of 

-120 kbar i n  the  s t a t i c  experiment, the present  experiment i nd ica t e s  

-36 k b a r / p e c .  

The high pressure r e s i s t i v i t y  data  of i ron  and n i cke l  i n  Fig.  13 

show t h a t  i r o n  exh ib i t s  a l a rge  change i n  r e l a t i v e  r e s i s t ance  i n  the 

v i c i n i t y  of 130 kbar, whi le  no such change occurs f o r  n icke l .  Fu l l e r  

and Price '  i n t e rp re t ed  t h i s  change i n  r e l a t i v e  r e s i s t a n c e  a s  being 

caused by the 0 1 -  y polymorphic t r a n s i t i o n  of i ron,  and from the i r  

dynamic high pressure r e s i s t i v i t y  da ta  ( see  Fig. 13) they placed the 

C Y -  y polymorphic t r a n s i t i o n  of i r o n  a t  150 kbar and - l O O ° C .  However, 

most workers i n  the f i e l d 6 , 1 4  cu r ren t ly  i d e n t i f y  t h e  observed t r a n s i t i o n  

a s  suggested by the dynamic high pressure r e s i s t i v i t y  data  of Fu l l e r  and 

Price w i t h  the  s t a t i c  0 1 -  t r a n s i t i o n  of i ron .  The sudden change i n  

r e l a t i v e  r e s i s t a n c e  of i r o n  w i t h  p ressure  observed i n  the present  experi-  

ments is the re fo re  in t e rp re t ed  a s  caused by the C Y - ' €  polymorphic 

transformation of i ron .  Actually, the  shocked ma te r i a l  may even be a 

mixture of y and € phases. 

The present  high pressure r e s i s t i v i t y  da ta  of i r o n  were not a l l  

measured a t  p rec i se ly  the  same temperature due to the generat ion of hea t  

by shock compression ( see  Sect ion A ) .  

was used a s  t h e  in su la t ion  ma te r i a l  i n  the present  experiments there is  

neg l ig ib l e  heat  flow from the surrounding mater ia l s  i n t o  the i ron  

specimens. T h i s  is because the  shock impedance of Lucalox ceramic 

However, s ince  Lucalox ceramic 
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matches c lose ly  t h a t  of i ron .  Hence, t he  shock temperatures of the 

Lucalox ceramic and i r o n  a r e  almost i d e n t i c a l .  The temperature rise 

i n  the i r o n  specimens is the re fo re  due e n t i r e l y  t o  the shock hea t ing  of 

the  i r o n  specimen alone.  The temperature rise due t o  shock hea t ing  for  

i r o n  s ing ly  shocked t o  130 kbar has been estimated t o  be less than 4OoC. 

Thus, the  temperature v a r i a t i o n  over the present  set  of high pressure 

r e s i s t i v i t y  da t a  of i r o n  is expected t o  be less than 100°C. 

The present  dynamic high pressure r e s i s t i v i t y  da ta  for  i ron  

(Fig. 13) show a sudden increase  (- 30%) i n  r e s i s t a n c e  a t  

which is absent  i n  the da ta  of Fu l l e r  and Pr ice .  T h i s  rise i n  r e s i s t a n c e  

cannot be discounted a s  an instrumental  a r t i f a c t  s ince  n i cke l  was included 

a s  a con t ro l  i n  each of our experiments, and no abrupt  r i s e  i n  r e s i s t ance  

was observed f o r  n icke l .  

- 80 kbar 

Three mechanisms must be considered as poss ib le  causes of t h i s  

r e s i s t ance  jump. 

the  01- € t r a n s i t i o n  might a c t u a l l y  s t a r t  a t  a lower pressure than has 

been previously reported.  Such an explanation may a t  first seem l i k e l y  

i n  the  present  case because t h e  high pressure r e s i s t i v i t y  of €- i ron is 

much higher (- 300%) than t h a t  of 01-iron;" hence, the  p a r t i a l  t r ans -  

formation of 01- i n t o  €-iron a t  -80 kbar could account for t h e  

observed rise i n  r e l a t i v e  r e s i s t ance .  However, t h e  s t a t i c  r e s i s t i v i t y  

da ta  for  iron18,29 do not show any ind ica t ion  of the onset of such a 

transformation near 80 kbar. Even i f  one could a s soc ia t e  the rise i n  

r e s i s t ance  of i r o n  w i t h  t h e  onset of an 01+ € t r a n s i t i o n ,  one would 

expect t h a t  the r e s i s t ance  of i ron  would r i s e  continuously, increas ing  

w i t h  shock stress between - 80 kbar and s t r e s s  a t  which the transforma- 

t i o n  is complete. However, the p la teau  a t  -80 kbar would be very 

d i f f i c u l t  t o  r a t i o n a l i z e  on t h i s  bas i s  un less  the  01-' F t r a n s i t i o n  

pressure is s t rongly  o r i e n t a t i o n  dependent. 

F i r s t ,  a s  previously suggested by Mitchel l  and Keeler ,26 

Second, a shock induced r e s i s t i v i t y  increase  due t o  c rea t ion  of 

l a t t i c e  defects could account for  some rise i n  the  e l e c t r i c a l  r e s i s t i v i t y  

of i ron  a t  -80 kbar. However, the magnitude and abrupt  na ture  of the 

r i s e  and the subsequent p la teau  argue aga ins t  i n t e r p r e t i n g  the e n t i r e  

r i s e  t h i s  way. One would expect the most rapid increase  i n  de fec t  
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concentrat ion t o  occur a t  lower pressures  for both i ron ,  and nickel ,  and 

i n  f a c t  the gradual  rise i n  r e s i s t i v i t y  a t  lower stresses (Fig.  13) 

would appear t o  be caused pr imari ly  by shock induced defects. 

absence of such an abrupt  r e s i s t a n c e  rise a t  -80 kbar i n  the  n i c k e l  

da ta  argues f u r t h e r  aga ins t  t h i s  mechanism. It is t r u e  that i r o n  

di'ffers from n icke l  i n  that i t  is much more e a s i l y  twinned. 

The 

In  another 

series of experiments, 30 postshock metallographic examination of i r o n  

specimens showed t h a t  mechanical twins begin to  form i n  shocked i r o n  

below 50 kbar, but  terminal r e s i s t ance  measurements showed the magnitude 

of the r e s i s t ance  increase  i n  heavi ly  twinned samples t o  be much t o o  

small t o  expla in  the rise a t  - 80 kbar. 

F ina l ly ,  w e  a r e  l e f t  w i t h  the p o s s i b i l i t y  t h a t  a t  l e a s t  pa r t  of the 

C1 (b,c.c.) - i r o n  is transformed i n t o  a new phase under the  inf luence of 

t he  very high shear  s t r e s s e s  assoc ia ted  w i t h  the shock. T h i s  new phase 

need not even have any f i e ld  of thermodynamic s t a b i l i t y  (i.e., i t  might 

e x i s t  only a s  a metastable phase).  Since the m o d e  of shock compression 

is plane s t r a i n ,  g ra ins  or iented w i t h  the < 100 > d i r e c t i o n s  p a r a l l e l  

or near ly  p a r a l l e l  t o  the  d i r e c t i o n  of normal shock stress w i l l  exper i -  

ence some e l a s t i c  d i s t o r t i o n  from cubic  t o  t e t r agona l  s t r u c t u r e .  Thus, 

t he  most l i k e l y  c r y s t a l  s t r u c t u r e  of t h i s  dynamic high pressure phase is 

body-centered t e t r agona l  (b .c.t .), s imi l a r  t o  the mar tens i t ic  

phase of i r o n  and some of its a l l o y s .  If, i n  f a c t ,  t h e  proposed phase 

i s  metastable,  then for a specimen w i t h  randomly or ien ted  gra ins ,  only 

a f r a c t i o n  of the 

the transformation ceasing when a l l  the favorably or ien ted  g ra ins  have 

been transformed. Transformation of C1-iron i n t o  such a metastable 

phase may not occur a t  a l l  under a hydros ta t ic  mode of compression. 

C1' 

CL-iron is expected to ,undergo  t h i s  transformation, 

There is  another  d i s t i n c t  f e a t u r e  i n  which the present da t a  for  i ron  

d i f f e r  from those of Fu l l e r  and Pr ice .  The F u l l e r  and P r i ce  da ta  ind ica t e  

an  abrupt  high pressure o L +  F phase t r a n s i t i o n ,  whereas the present  

data  ind ica t e  that the  transformation is a r a t h e r  gradual one. The 

presence of some of the proposed b.c.t. phase would be expected t o  

cont r ibu te  t o  t h i s  gradual i ty ,  s i n c e  the b.c.t. -t € 

occur a t  a d i f f e r e n t  dynamic pressure than the a + €  t r a n s i t i o n .  This  

t r a n s i t i o n  should 
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gradualness, a s  suggested by the present  data ,  is cons is ten t  with t h e  

s t a t i c  high pressure r e s i s t i v i t y  da t a  of i ron  obtained by Balchan and 

Drickamer2' and supports  a simple mar t ens i t i c  model for the 

t r a n s i t i o n  of i ron  a s  proposed r ecen t ly  by D ~ v a l l . ~ '  

r e s i s t i v i t y  da ta  ind ica t e  t h a t  the Cc-' 6 t r a n s i t i o n  of i ron  s t a r t s  a t  

around 120 kbar and completes a t  around 160 kbar. The r e s u l t s  described 

i n  Sect ion B-3-d, above, fu rn i sh  f u r t h e r  evidence t o  support  the 

conclusion that the  C c +  6 t r a n s i t i o n  of i r o n  is  complete a t  about 

160 kbar . 

Cc-' c 
The present  

Although Bancroft e t  detected three s t a b l e  shocks i n  i r o n  

s t a r t i n g  a t  

polymorphic t r a n s i t i o n  (now i d e n t i f i e d  a s  Cc-' 6) i n  i ron,  a t  l e a s t  t w o  

s t ~ d i e s ~ ~ , ~ ~  have suggested tha t  the shock pressure required t o  produce 

the c h a r a c t e r i s t i c  metallographic "matte" appearance associated w i t h  the 

130-kbar dynamic t r a n s i t i o n  may a c t u a l l y  be - 155 kbar. One of the  

objec t ives  of the  present  p ro jec t  has been t o  reconci le  t h i s  discrepancy. 

The present  da ta  irr ' - a t e  t h a t  t he  01-' € transformation of i ron  s t a r t s  

a t  around 120 kbar. As soon a s  a c r i t i ca l  amount of Cc-iron has been 

transformed i n t o  €-iron, i t  is expected t h a t  three s t a b l e  shocks w i l l  

appear. Thus the observat ion by Bancroft e t  a l .  of th ree  s t a b l e  shocks 

i n  i ron  a t  133 kbar is cons i s t en t  w i t h  the present  da t a .  

metallographic "matte" pa t t e rn  c h a r a c t e r i s t i c  of the Cc + F transformation 

of i ron  w i l l  not appear u n t i l  a f t e r  the  bulk of t h e  Cc-iron has been 

transformed i n t o  €-iron. Since the present  da ta  ind ica t e  t h a t  t h e  

01-' t r a n s i t i o n  is  complete a t  - 160 kbar, it i s  reasonable t h a t  the 

shock pressure required t o  produce the "matte" pa t t e rn  should be -155 

kbar a s  observed. 

-130 kbar and in t e rp re t ed  them a s  caused by the Cc-y 

However, the 

There a r e  seve ra l  reasons why the present  data  a r e  more r e l i a b l e  

than those of Fu l l e r  and Pr ice .  

above, Fu l l e r  and P r i ce  used a two-pole configurat ion i n  the p i ezo res i s t i ve  

elements of the i r  experiments. With the two-pole conf igura t ion  the 

accuracy of measurements can be g r e a t l y  a f f ec t ed  by contact  r e s i s t ance .  

With the four-pole configurat ion,  a s  used i n  the present  experiments, the 

error caused by contact  r e s i s t a n c e  is neg l ig ib l e .  Since Fu l l e r  and Price 

F i r s t  of a l l ,  a s  mentioned i n  Sect ion A, 
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a l s o  used a two-pole manganin transducer t o  monitor the pressure i n  

their experiments, t h e  accuracy of not only the  r e s i s t a n c e  of the i r o n  

specimen but  a l s o  of t he  pressure reading i n  manganin might be i n  error. 

Second, ins tead  of using an impedance matching in su la t ing  mater ia l  

sych a s  Lucalox ceramic i n  the cons t ruc t ion  of their  t a rge t s ,  Fu l l e r  . - ”  

and Price used a thermosett ing res in ,  which has a very much lower shock 

impedance than that of i ron .  The impedance mismatch induces i n  the  

i r o n  specimen a t r a n s i e n t  pressure t h a t  is very much higher than t h a t  

indicated by the manganin t ransducer .  Furthermore, due t o  the l o w  shock 

impedance of the thermosetting r e s in ,  the r e s i n  ma te r i a l  experiences 

very high shock temperatures,34 and the  heat  f l o w  i n t o  the i r o n  specimen 

from the surrounding r e s i n  is  no longer neg l ig ib l e .  

of i ron  is  a funct ion of both temperature and pressure,  the  increase  i n  

r e s i s t ance  of the i ron  specimen due t o  t h i s  ex t r a  heat ing is q u i t e  

s u b s t a n t i a l .  Moreover, such an increase  i n  r e s i s t i v i t y  cannot r ead i ly  be 

estimated or corrected for .  Th i s  s i t u a t i o n  worsens a s  one goes t o  higher 

pressures  a s  the temperature d i f fe rence  between the thermosetting r e s i n  

and the i ron  specimen becomes much g rea t e r .  However, when Lucalox is 

used a s  the in su la t ing  mater ia l ,  a s  i n  t h e  present  experiments, no such 

heat ing occurs s ince  the shock impedance and hence the shock temperature 

of the  Lucalox ceramic is almost i d e n t i c a l  t o  t h a t  of i r o n  i n  the pressure 

range 0 t o  500 kbar. 

i r o n  specimen has been estimated and found t o  be r a t h e r  small  (< 100°C). 

Since the  r e s i s t i v i t y  

As discussed previously,  the shock heat ing of the  

Third,  the  shock induced t r a n s i e n t  demagnetization eddy cur ren t  

spike (see Sect ion A )  that appeared a t  the beginning (i.e., a t  t h e  

a r r i v a l  of t h e  shock) of every i ron  r e s i s t i v i t y  record f o r  a l l  pressures  

under s tudy had been completely ignored by Fu l l e r  and Price. The 

presence of t h i s  eddy cu r ren t  spike,  due t o  i ts  large amplitude, could 

lead t o  an  erroneous measurement of t h e  i ron  r e s i s t ance  i f  not properly 

taken i n t o  account. The present  i nves t iga to r s  a r e  f u l l y  aware of such 

eddy cur ren t  sp ikes  and the i r  e f f e c t s  on the measurements of i r o n  

r e s i s t a n c e  have been f u l l y  accounted for.  
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Fourth, s ince  the da ta  of F u l l e r  and P r i ce  suggest an abrup C L +  e 
t r a n s i t i o n  i f  i ron,  they a r e  incons is ten t  w i t h  the s t a t i c  da ta  of Balchan 

and D r i c k a m e r , 2 9  which ind ica t e  t h e  r e s i s t ance  t r a n s i t i o n  is rather 

gradual  and has a spread i n  pressure  of approximately 40 kbar i n  

agreement with the present  da ta .  

that suggested by the da ta  of Fu l l e r  and Price cannot reconci le  t h e  

discrepancy between the Bancroft e t  a l .  da ta  on t h e  observat ion of 

three stable shocks in  i r o n  a t  130 kbar and the recent  s t u d i e s  on the 

shock pressures  required t o  produce the metallographic "matte" 

appearance assoc ia ted  w i t h  t he  Q +  f dynamic t r a n s i t i o n  of i r o n ,  

Moreover, an abrupt  t r a n s i t i o n  such a s  

The dynamic high pressure  r e s i s t i v i t y  da ta  of i r o n  described i n  

Sect ion B-3-b i nd ica t e  that the  01- e t r a n s i t i o n  of i ron  s t a r t s  a t  - 120 kbar and completes a t  - 160 kbar. The demagnetization resul ts  

described i n  Sect ion B-3-d f u r n i s h  f u r t h e r  evidence that the  t r a n s i t i o n  

indeed completes a t  -160 kbar. W e  be l ieve  t h i s  i s  the f irst  time 

t h a t  shock induced t r a n s i e n t  demagnetization eddy cur ren t  s i g n a l s  were 

employed t o  monitor the completeness of a polymorphic t r a n s i t i o n  of a 

magnetic ma te r i a l  ( i n  t h i s  case  the 

func t ion  of pressure.  T h i s  technique can be used w i t h  equal prof ic iency 

i n  other s i t u a t i o n s  involving polymorphic t r a n s i t i o n s  from a magnetic 

phase t o  a nonmagentic phase or v ice  versa .  For example, the same 

technique can be appl ied t o  the C L -  and C L -  e polymorphic 

t r a n s i t i o n s  of i r o n  and i ron-nickel  a l l o y s  a t  var ious i n i t i a l  temperatures. 

Thus, t h i s  newly developed technique furn ishes  a very usefu l  supplementary 

t o o l  t o  the r e s i s t i v i t y  techniques described i n  Sect ion A above i n  the 

s tud ie s  of dynamic phase t r a n s i t i o n s  of i r o n  and i ron-nickel  a l l o y s .  

C L -  F t r a n s i t i o n  of i ron )  a s  a 

The new da ta  on the dynamic response of CL-iron under shock 

loading described i n  Sect ion I-B-3, above, were presented a t  the 1968 

Gordon Conference on High Pressure Research. From the views expressed 

a t  that conference there appeared t o  be genera l  acceptance by conferees 

of our new shock wave r e s i s t i v i t y  da ta  for  i ron  i n  con t r a s t  wi th  those 

obtained by F u l l e r  and Price. Furthermore, t h e r e  was genera l  agreement 

t h a t  the dynamic (P,T) phase diagram of i ron  needs a thorough rev is ion .  

The discovery of €-iron, once formed, does not  automatical ly  r eve r t  t o  
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a-iron upon pressure r e l e a s e  (experimental  pressure r e l ease  was 

36 k b a r / p e c  f o r  

CL - t r a n s i t i o n  pressure)  was received w i t h  much i n t e r e s t .  

Takahashi, one of t h e  conferees,  pointed out  a t  t he  conference t h a t  the 

pers i s tence  of 

only a small f r a c t i o n  of the specimen remained a s  

r e l ease  (1 kbar/sec) t o  - 80 kbar.  The f a c t  that none of the €- i ron 

was observed t o  r e v e r t  t o  Ol-iron upon pressure  r e l e a s e  (36 k b a r l p e c ) ,  

i n  t h e  present  experiments was considered t o  be a very i n t e r e s t i n g  

discovery.  

of the dynamic C L 3  € t r a n s i t i o n  of i ron  (see Sect ion I-B-3d) was a l s o  

received w i t h  much enthusiasm. The presenta t ion  of our new da ta  on t h e  

dynamic response of 

considerable  s a t i s f a c t i o n  among conferees t h a t  work has f i n a l l y  begun 

towards c l a r i f y i n g  some of t h e  very c o n f l i c t i n g  da ta  i n  t h i s  f i e l d .  

> - 1 p e c  beyond the t i m e  of passing through t h e  

c- i ron was a l s o  observed i n  h i s  s ta t ic  experiment, bu t  

€-iron upon pressure  

- 

The double-shock technique f o r  monitoring the completeness 

CL-iron under shock loading appeared to br ing  

C. Conclusions and Recommendations f o r  Further Research 

The primary objec t ive  of the present  program was t o  study the 

e f f e c t s  of shock waves on the  me ta l l i c  minerals i n  i r o n  meteorites, 

namely i ron  and i ron-nickel  a l l o y s .  

was concerned w i t h  the dynamic high temperature and high pressure phase 

diagrams of i ron  and i ron-nickel  a l loys .  In the  course of t e s t i n g  out 

a new and more e f f i c i e n t  method t o  meet the objec t ive  of the program, 

it  was discovered that  c-iron, once formed, does not  automatical ly  

r eve r t  to  

through t h e  t r a n s i t i o n  pressure f o r  a t  l e a s t  1 p e c .  

f i c a n t  discovery is a t  variance w i t h  the da ta  of E r k m a ~ ~ , ~ ~  and it is 

concluded that  the  revers ion  of E- t o  CL-iron is governed by the l e v e l  

r a t h e r  than by the r a t e  of pressure  r e l ease .  

The f i r s t  p a r t  of t he  program 

a-iron upon pressure r e l ease  ( a t  l e a s t  a t  a r a t e  < 36 k b a r / p e c )  - 
This  highly s i g n i -  

A c a r e f u l  r e inves t iga t ion  of the  dynamic CL-' c t r a n s i t i o n  of i ron  

using an improved r e s i s t i v i t y  technique yielded data  that a r e  i n  sub- 

s t a n t i a l  disagreement w i t h  s i m i l a r  da ta  obtained previously by Fu l l e r  

and Pr ice .  However, the present  da ta  a r e  cons i s t en t  w i t h  the s t a t i c  

r e s i s t ance  da ta  of Balchan and D r i c k a m e r .  Moreover, they reso lve  f o r  
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the f i r s t  t i m e  t h e  discrepancy between the observat ion of three s t a b l e  

shocks i n  i ron  a t  130 kbar by Bancroft e t  a l . 4  and the  evidence by two 

recent   investigation^^'^^^ t h a t  the shock pressure required to  produce 

the  metallographic "matte" appearance assoc ia ted  wi th  the  130-kbar 

dynamic t r a n s i t i o n  may be - 155 kbar.  A c r i t i c a l  comparison between 

tEe present  techniques and those used by Fu l l e r  and P r i ce  led t o  the 
conclusion tha t  the  present  da ta  are more r e l i a b l e .  It is believed 

t h a t  the present  i nves t iga t ion  has s i g n i f i c a n t l y  increased the l e v e l  of 

understanding of the 01-  € dynamic t r a n s i t i o n  of i ron .  

A r e s i s t a n c e  heat ing technique for  varying t h e  i n i t i a l  temperature 

of i ron  or i ron-nickel  a l l o y  specimens used a s  p i ezo res i s t i ve  elements 

i n  r e s i s t i v i t y  techniques for  studying polymorphic t r a n s i t i o n s  has been 

successfu l ly  developed i n  t h i s  p ro jec t .  T h i s  development includes the  

design and cons t ruc t ion  of a high cur ren t  power supply (35 amp a t  3.5Kv) 

w i t h  a va r i ab le  output dura t ion  con t ro l  for  use  i n  the  r e s i s t ance  

heat ing of i r o n  (or i ron-nickel  a l l o y s )  specimens and a c a l i b r a t i o n  

between the  temperature and the  amplitude and dura t ion  of t he  heat ing 

cur ren t  for i ron .  

Another technique has been developed during t h i s  p ro jec t  u t i l i z i n g  

the  shock induced t r a n s i e n t  demagnetization eddy cur ren t  sp ike  for 

monitoring the completeness of polymorphic t r a n s i t i o n s  involving a 

magnetic phase. T h i s  newly developed technique furn ishes  a very usefu l  

supplementary tool t o  the  r e s i s t i v i t y  techniques described i n  Sect ion A, 

above, i n  the s t u d i e s  of dynamic phase t r a n s i t i o n s  i f  i ron  and i ron-nickel  

a l l o y s  

It becomes c l e a r  from the r e s u l t s  of t h i s  p ro jec t  t h a t  i n  order t o  

i n t e r p r e t  the metallographic f e a t u r e s  of i r o n  and i ron-nickel  a l l o y s  

subjected t o  shock loading, one must have f u l l  understanding of t h e  

dynamic phase t r a n s i t i o n s  of these mater ia l s .  

phase diagrams of i ron  and i ron-nickel  a l l o y s  a r e  use fu l  only t o  a 

c e r t a i n  ex ten t  s ince  they do not f u r n i s h  information on the  pressures  

necessary for  complete t ransformations t o  occur under dynamic s i t u a t i o n s .  

Moreover, t h e  experimental high temperature and high pressure phase 

The equi l ibr ium ( s t a t i c )  
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diagrams of iron-nickel a l loys  a r e  l a rge ly  unexplored, even s t a t i c a l l y .  

It  is therefore  recommended t h a t  the dynamic high temperature and high 

pressure phase diagrams of i ron  and iron-nickel a l l o y s  be invest igated,  

w i t h  spec ia l  emphasis on obtaining the pressures  necessary for phase 

transformations t o  complete under dynamic s i tua t ions .  The methods t o  

accomplish t h i s  object ive have been developed during the course of 

the present program. 
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11. RECOVERY EXPERIMENTS 

A. In t roduct ion  

The present  s tudy of shock e f f e c t s  i n  recovered specimens has been 

conducted i n  co l l abora t ion  with D r .  Matthias Comerf ord of t h e  Smithsonian 

I n s t i t u t i o n  Astrophysical Observatory. The co l l abora t ion  has been 

s t r i c t l y  s c i e n t i f i c ;  no t r a n s f e r  of funds between t h e  t w o  l a b o r a t o r i e s  

was involved. 

D r .  Comerford provided t h e  samples t o  be shocked. The shock 

recovery assemblies were constructed and shock loaded a t  Stanford 

Research I n s t i t u t e .  Metallographic s t u d i e s  and microhardness measure- 

ments were performed both a t  SRI and a t  t h e  Smithsonian. 

s t u d i e s  were performed a t  the  Smithsonian. 
ments and X-ray d i f f r a c t i o n  s t u d i e s  are cu r ren t ly  i n  progress a t  t h e  

Annealing 

Additional annealing experi-  

Smithsonian. A journa l  art icle,  present ly  i n  the  planning s t age ,  w i l l  

be j o i n t l y  authored by SRI and Smithsonian s t a f f  members. 

B. Shock Loading Experiments 

Samples of t h e  Karee Kloof meteori te ,  t he  Hoba meteori te ,  and an 

iron-2.5W s i l i c o n  s i n g l e  c r y s t a l  were se lec ted  f o r  t h e  experiments. 

Karee Kloof is  a coarse  oc tahedr i te ,  containing 7.68% nicke l .  This 

meteori te  was se l ec t ed  because the  kamacite p l a t e s  are r e l a t i v e l y  

undeformed and they are s u f f i c i e n t l y  wide ( 4 . 7  mm) f o r  d e t a i l e d  X-ray 

d i f f r a c t i o n  s tud ie s .  Hoba i s  a nicke l - r ich  a t a x i t e ,  conta in ing  16.2% 

nickel .  The e f f e c t s  of shock waves on n icke l - r ich  a t a x i t e  have not  pre- 

viously been s tudied .  Hoba was se l ec t ed  pr imari ly  because it is  a 

r ead i ly  ava i l ab le  member of t h i s  r e l a t i v e l y  rare class of meteori tes .  

The iron-2.5% s i l i c o n  s i n g l e  c r y s t a l  samples were chosen t o  provide a 

single-phase standard t o  f a c i l i t a t e  i n t e r p r e t a t i o n  of shock e f f e c t s  i n  

t h e  t w o  meteori tes .  

The meteori te  and i ron-s i l icon  samples were c a r e f u l l y  c u t  i n t o  

wafers , approximately 3/4” square by 1/10” th ick .  

was pot ted i n  Wood’s metal and sealed i n  a steel capsule.  

Each sample wafer 

Each capsule  
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w a s  placed i n  a nes t  of c l o s e l y  f i t t i n g  concent r ic  r ings  backed up by an 

anv i l  p l a t e .  The purpose of t h e  concent r ic  r ings  and t h e  a n v i l  p l a t e  w a s  

t o  p ro tec t  t h e  sample capsules  from t h e  e f f e c t s  of spurious r a r e f a c t i o n  

waves o r ig ina t ing  a t  f r e e  sur faces .  

., F i f t e e n  shock loading experiments were performed, using f l y e r  

p l a t e  systems developed i n  t h e  f i r s t  half  of t h i s  program (see SRI ' 

Quar te r ly  Progress Report 3, pp 10-15) and i n  earlier research  programs. 

The experimental d e t a i l s  are summarized i n  Table 111. Tabulated pres- 

sures  were computed by t h e  impedance match method, us ing  previously 

measured values f o r  f l y e r  p l a t e  ve loc i ty  i n  conjunct ion with ava i l ab le  

i r o n  and i ron-nickel  Hugoniot data .  The pressure  u n c e r t a i n t i e s  r e f l e c t  

both u n c e r t a i n t i e s  i n  f l y e r  p l a t e  impact ve loc t iy  and u n c e r t a i n t i e s  i n  

the  Hugoniots of the sample materials. 

The  f l y e r  p l a t e  systems were designed t o  t ransmit  a f l a t  topped 

plane pressure  pulse  t o  t h e  specimens. The systems were a l s o  designed 

t o  provide e s s e n t i a l l y  constant  pressures  throughout t h e  volume of each 

specimen. 

A l l  of t h e  samples were successfu l ly  recovered. The specimens 

showed no evidence of gross p l a s t i c  deformation; t h e  n ine  lowest pres-  

su re  samples were v i r t u a l l y  ind is t inguishable  from con t ro l  unshocked 

samples. The absence of gross  deformation i n  t h e s e  samples i s  exce l len t  

evidence t h a t  the  shock loading and recovery systems a c t u a l l y  performed 

as intended, v i z ,  t o  subjec t  t h e  samples t o  plane shocks of constant  

i n t e n s i t y  throughout t h e  sample volume and r e l i e v e  t h e  shock pressures  

v i a  a series of plane ra refac t ions .  
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C.  Metallographic S tudies  

1. Karee Kloof 

The kamacite phase of the con t ro l  specimens ind ica ted  very l i g h t  

twinning, on the order  of severa l  twins per  square m i l l i m e t e r  of kamacite. 

The t o t a l  area examined, however, was not s u f f i c i e n t  t o  obta in  accura te  

twin dens i ty  statist ics.  The twin dens i ty  appeared t o  be about a f a c t o r  

of two or t h r e e  higher i n  t h e  specimen of Karee Kloof shocked t o  35 kbar. 

However, t h e  twin dens i ty  i n  t h i s  sample would s t i l l  be descr ibable  as 

very low, and one may argue t h a t  the  d i f f e rence  i n  twin dens i ty  between 

con t ro l  sample and the  sample shocked t o  35 kbar i s  s ta t i s t ica l ly  

ins ign i f i can t .  I n  the specimen shocked t o  70 kbar ,  t h e  twin dens i ty  

has increased by orders  of magnitude over t h e  con t ro l .  The spacing 

between adjacent  twins has been reduced t o  10-20 microns, vs ca 1 rn 
for t he  cont ro l .  The specimen shocked t o  90 kbar shows an even higher 

twin dens i ty ;  t h e  spacing between adjacent  p l a t e s  is i n  t h e  range 5-10 

microns (see Fig. 18). The specimen of Karee Kloof shocked t o  235 kbar 

appears t o  be very much more densely twinned, and t h e  matrix mater ia l  

between twins is  highly d i s t o r t e d .  T h i s  s t r u c t u r e  is  similar i n  

appearance t o  microstructures  which have been assoc ia ted  w i t h  dynam- 

i c a l l y  observed phase t r a n s i t i o n s  i n  i n i t i a l l y  i r o n  a l loys .  This type 

of microstructure  has been var ious ly  r e fe r r ed  t o  i n  t h e  l i t e r a t u r e  as 
I *  I t  I t  I f  t ransformation twinned, matte'' s t r u c t u r e ,  or t ransformation 

s t ruc ture" .  

r e s u l t s  from a shock induced phase t r a n s i t i o n  tha t  reverses  on release 

of pressure.  The specimen of Karee Kloof shocked t o  480 kbar i s  s i m i -  

l a r  i n  micros t ruc ture  t o  the  235-kbar specimen. 

It  i s  more or less accepted a t  present  t ha t  t h i s  s t r u c t u r e  

2. Iron-2.5% S i l i c o n  

The con t ro l  sample appears r ep resen ta t ive  of a good s i n g l e  c r y s t a l .  

N o  twins are present  and ne i the r  g ra in  boundaries nor low-angle sub- 

boundaries were observed. Metallographic f e a t u r e s  observed i n  t h e  

shocked samples corresponded roughly t o  f e a t u r e s  observable i n  t h e  

kamacite phase of shocked specimens of Karee Kloof. The twin dens i ty  

increased w i t h  increas ing  shock pressure  f o r  t h e  35-, 70- ,  and 90-kbar 

experiments. However, t h e  twin dens i ty  w a s  genera l ly  much higher i n  t h e  
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shocked i ron - s i l i con  specimens than  i n  t h e  Karee Kloof kamacite shocked 

t o  t h e  same pressure.  The twin dens i ty  i n  the  35-kbar i ron - s i l i con  

specimen w a s  s imi l a r  t o  the twin dens i ty  i n  t he  70-kbar Karee Kloof 

kamacite. The characteristic matte" o r  t ransformation twinned" 

microstructure  w a s  observed i n  t he  specimens shocked t o  235 kbar and 

480 kbar. The 235 kbar and 480 kbar microstructures  are not i d e n t i c a l  

i n  appearance. Although the  major micros t ruc tura l  f e a t u r e  of both 

s t r u c t u r e s  is  heavy banding which could be described as dense twinning, 

t he re  appears t o  be less d i s t o r t i o n  of t h e  matrix mater ia l  i n  the  480 

kbar specimen (see Fig. 19) .  

J t  If  

3. Hoba 

The r e s u l t s  of metallographic examination of con t ro l  and shocked 
- 

specimens of Hoba have been most surpr i s ing .  W e  have been a b l e  t o  f i n d  

no s i g n i f i c a n t  metal lographical ly  observable d i f f e rences  between cont ro l  

and shocked specimens. D r .  Comerford has examined t h e  shocked Hoba 

specimens and he has a l s o  been unable t o  f ind  unequivocal d i f f e rences  

between t h e  shocked and con t ro l  specimens. One source of d i f f i c u l t y  

arises from t h e  f a c t  t h a t  t h e  kamacite phase i n  Hoba i s  d i s t r i b u t e d  

pr imar i ly  i n  the  form of very t i n y  p l a t e l e t s ,  averageing only a few 

microns i n  width. It i s  extremely d i f f i c u l t  t o  observe any s t r u c t u r a l  

d e t a i l s  i n  these p l a t e l e t s .  We have, theref ore ,  concentrated,  without 

success,  on looking f o r  shock e f f e c t s  i n  occasional l a r g e r  p l a t e s  of 

kamacite which are sca t t e red  throughout the meteori te  specimens. 

D. Hardness and Annealing Studies  

Hardness changes i n  t h e  shock loaded specimens were surveyed by 

Vickers hardness measurements. I n  t h i s  method a pyramidal diamond 

indenter  is  used t o  make an impression on t h e  su r face  of t h e  specimen. 

The Vickers hardness number is defined as t h e  load per  u n i t  area of 

su r face  contac t  and has t h e  dimensions of kilograms per  dquare m i l l i -  

meter. Vickers hardness numbers are s e n s i t i v e  t o  appl ied loads,  t o  an 

ex ten t  t h a t  depends on both t h e  work-hardening characteristics of t h e  

material and t h e  scale of heterogenei ty  i n  t h e  material. For small 

loads,  1-100 grams, an e r r o r  arises from the  d i f f i c u l t y  of accura te ly  

measuring the  area of t h e  r e s u l t a n t  small impressions. 
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FIG. 19 MATTE STRUCTURE IN SHOCKED Fe-2.5% Si (a) 235 kbar, (b) 480 kbar 
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The Vickers hardnesses of con t ro l  specimens of Karee Kloof kamacite 

and iron-2.5% s i l i c o n  were i n  the  range 150-180 (100-gram loads) .  

hardness inc rease  t o  200-225 Vickers (100-gram load) w a s  observed f o r  t h e  

A 

specimens shocked t o  35, 70, and 90 kbar. In  t h i s  range, 35-90 kbar,  

the  shock induced hardness increase  i n  e i t h e r  kamacite or iron-2.5% 

s i l i c o n  d id  not appear p a r t i c u l a r l y  s e n s i t i v e  t o  shock pressure.  A 

l a r g e  increase  i n  hardness t o  Vickers 300-330 w a s  observed i n  t h e  speci-  

mens of Karee Kloof kamacite and iron-2.5% s i l i c o n  shocked t o  pressures  

of 235 and 480 kbar. These r e s u l t s  are i n  agreement with observat ions 

made by other  workers on shock-loaded i r o n  alloys?6 

I n  t h e  case  of Hoba, Vickers hardness measurements of both cont ro l  

and shock loaded specimens yielded a wide v a r i a t i o n  i n  values,  depending 

on both t h e  appl ied load and on t h e  region i n  which a measurement w a s  

made. 

100 gram-load hardness measurements yielded t h e  same average hardness 

of 220 Vickers f o r  con t ro l  sample and f o r  samples shocked t o  35, 70, 

and 90 kbar. With the same load the  samples shocked t o  235 and t o  480 

kbar had average hardnesses of 300 and 250 Vickers, respec t ive ly .  W i t h  

500-gram loads,  t he  average hardness of t h e  con t ro l  specimen w a s  about 

220 Vickers; specimens shocked t o  35 kbar and t o  480 kbar had the  same 

average hardness of about 280 Vickers; specimens shocked t o  70 kbar and 

t o  90 kbar had an average hardness of 240 Vickers; and t h e  specimen 

shocked t o  235 kbar had a hardness of about 300 Vickers.  

For regions which contained micron-size kamacite p l a t e l e t s ,  

I n  t h e  con t ro l  specimen of Hoba t h e r e  were seve ra l  kamacite p l a t e s  

of s u f f i c i e n t  s i z e  t o  permit 100-gram load hardness measurements. These 

p l a t e s  had a hardness of about 175 Vickers, equivalent  t o  the  hardness 

of undeformed kamacite i n  oc t ahedr i t e s  such as Karee Kloof. A similar 

l a r g e  kamacite p l a t e  i n  t h e  235-kbar Hoba specimen had a hardness of 

300 Vickers. Thfs l a t te r  hardness is  equivalent  t o  the  hardness of 

kamacite or i r o n  which has been shocked t o  pressures  of 200 kbar and 

which shows evidence of t h e  "matte" s t ruc tu re .  However, no evidence 

of t h e  "matte" s t r u c t u r e  could be found i n  the  kamacite of t h e  235-kbar 

Hoba specimen. A s i n g l e  kamacite p l a t e  s u i t a b l e  f o r  measurement w a s  

found i n  t h e  480-kbar Hoba specimen. 

200 Vickers, only s l i g h t l y  harder than unshocked kamacite. 

T h i s  p l a t e  had a hardness of 



The r e su l t s  of annealing experiments on t h e  235- and 480-kbar 

specimens of Karee Kloof kamacite, Hoba, and iron-2.5% s i l i c o n  are 

presented i n  Table I V Y  Metallography ind ica t e s  t h a t  t h e  d r a s t i c  decrease 

i n  hardness of t h e  Karee Kloof and iron-2.5% s i l i c o n  a f t e r  t h e  506' and 

606' C t reatments  is due t o  r e c r y s t a l l i z a t i o n ,  

E.  Conclusions and Recommendations f o r  Further  Research 
. \ .  ._ 

The dynamic s t u d i e s  of t he  behavior of i r o n  under shock loading 

have already provided much evidence re levant  t o  the i n t e r p r e t a t i o n  of 

t he  micros t ruc tura l  and mechanical changes i n  t h e  recovered shock 

loaded specimens. Based only on t h e  metallographic and hardness 

changes, one would be r e l u c t a n t  t o  suggest t h a t  t h e  specimen of Karee 

Kloof kamacite shocked t o  253 kbar had been completely transformed t o  

high pressure  phases during passage of t h e  shock. However, on the 

bas is  of evidence from t h e  dynamic s tud ie s  and addi t iona l  evidence 

t h a t  t h e  t r a n s i t i o n  pressure  i s  lower i n  5% nickel- i ron than i n  pure 

i ron ,  one may argue t h a t  t h e  t ransformation was complete during 

passage of t h e  shock and t h a t  revers ion t o  t h e  low pressure  phase 

occurred during pressure  r e l ease .  

I n  t h e  90-kbar experiments w i t h  both iron-2.5% s i l i c o n  and Karee 

Kloof kamacite w e  noted a l a r g e  increase  i n  twin dens i ty  over t h e  

specimens shocked t o  70 kbar. I t  is most i n t e r e s t i n g  that  these 

experiments bracket t h e  pressure  region i n  which a 30% increase  of 

r e s i s t i v i t y  i s  observed i n  t h e  dynamic experiments. Sole ly  on t h e  

bas i s  of t h e  dynamic evidence, w e  have t e n t a t i v e l y  proposed t h a t  a 

new modification of i r o n  may form i n  t h i s  pressure  range. It  i s  

poss ib le  t h a t  t h e  heavi ly  twinned 90-kbar microstructure  is assoc ia ted ,  

a t  l e a s t  i n  p a r t ,  w i t h  t h e  proposed new phase. However, f u r t h e r  

research,  including both dynamic measurements and recovery s tud ie s ,  

w i l l  be necessary t o  d e f i n i t e l y  e s t a b l i s h  both t h e  ex is tence  of t he  

new phase and i t s  r e l a t ionsh ip  t o  t h e  observed heavy twinning. 

The r e s u l t s  of both metallographic and microhardness s t u d i e s  of 

shocked Karee Kloof kamacite and iron-2.5% s i l i c o n  are i n  general  accord 

w i t h  r e s u l t s  obtained by other workers f o r  body-centered cubic i r o n  

a l loys .  However, more experiments w i l l  be necessary before  w e  can hope 
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t o  establish a pressure  scale for  shocked meteori tes .  We are partic- 

u l a r l y  i n  need of experiments i n  the 90 t o  200-kbar pressure  range t o  

inves t iga t e  the  t r a n s i t i o n  between dense twinning and the  appearance 

of the ’*matte” s t ruc tu re .  Our r e s u l t s  on the shocked Hoba specimens 

i n d i c a t e  that  shock effects may be d i f f i c u l t  t o  observe i n  n icke l  r ich 

a t a x i t e s .  

m e t  a1 lographical  1 y observable 

upon t h e  s i z e  of the  kamacite plates. 

f u r t h e r  would be t o  perform shock experiments on medium, and 
f i n e s t  octahedrites. 

3 

It is  possible tha t  t h e  phase t r a n s i t i o n ,  or a t  least a 
I t  m a t t  e” s t r u c t u r e ,  may depend c r i t i ca l  1 y 

One way t o  i n v e s t i g a t e  t h i s  
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