33,116 research outputs found

    Experimental investigation of a large-scale, two-dimensional, mixed-compression inlet system: Internal performance and drag at transonic conditions, free stream Mach equals 0.6 to 1.28

    Get PDF
    A large scale, variable-geometry inlet system with a design Mach number of 3.0 was tested at Mach numbers from 0.6 to 1.28. Variable features for off-design operation are an adjustable-height ramp system and a translating cowl. Experimental results are presented for transonic ramp and cowl positions showing the effect of throat boundary layer bleed and vortex generators on engine-face performance. Detailed pressure and force-balance data are used to evaluate transonic drag characteristics

    Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density

    Full text link
    We calculate the two-pion correlation function for an expanding hadron source with a finite baryon density. The space-time evolution of the source is described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT) radius is extracted after effects of collective expansion and multiple scattering on the HBT interferometry have been taken into account, using quantum probability amplitudes in a path-integral formalism. We find that this radius is substantially smaller than the HBT radius extracted from the freeze-out configuration.Comment: 4 pages, 2 figure

    Automatic adaptive multi-point moment matching for descriptor system model order reduction

    Get PDF
    We propose a novel automatic adaptive multi-point moment matching algorithm for model order reduction (MOR) of descriptor systems. The algorithm implements both adaptive frequency expansion point selection and automatic moment order control via a transfer function based error metric. Without a priori information of the system response, the proposed algorithm guarantees a much higher global accuracy compared with standard multi-point moment matching without adaptation. The moments are computed via a generalized Sylvester equation which is subsequently solved by a newly proposed generalized alternating direction implicit (GADI) method. Numerical examples then confirm the efficacy of the proposed schemes. © 2013 IEEE.published_or_final_versio

    Efficient matrix exponential method based on extended Krylov subspace for transient simulation of large-scale linear circuits

    Get PDF
    Paper 3C-3Matrix exponential (MEXP) method has been demonstrated to be a competitive candidate for transient simulation of very large-scale integrated circuits. Nevertheless, the performance of MEXP based on ordinary Krylov subspace is unsatisfactory for stiff circuits, wherein the underlying Arnoldi process tends to oversample the high magnitude part of the system spectrum while undersampling the low magnitude part that is important to the final accuracy. In this work we explore the use of extended Krylov subspace to generate more accurate and efficient approximation for MEXP. We also develop a formulation that allows unequal positive and negative dimensions in the generated Krylov subspace for better performance. Numerical results demonstrate the efficacy of the proposed method. © 2014 IEEE.published_or_final_versio

    Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets

    Full text link
    We examine the two-pion interferometry for a granular source of quark-gluon plasma droplets. The evolution of the droplets is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the HBT radius RoutR_{out} decreases if the initial size of the droplets decreases. On the other hand, RsideR_{side} depends on the droplet spatial distribution and is relatively independent of the droplet size. It increases with an increase in the width of the spatial distribution and the collective-expansion velocity of the droplets. As a result, the value of RoutR_{out} can lie close to RsideR_{side} for a granular quark-gluon plasma source. The granular model of the emitting source may provide an explanation to the RHIC HBT puzzle and may lead to a new insight into the dynamics of the quark-gluon plasma phase transition.Comment: 5 pages, 4 figure
    corecore