13 research outputs found

    Escape is a more common mechanism than avidity reduction for evasion of CD8+ T cell responses in primary human immunodeficiency virus type 1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD8+ T cells play an important role in control of viral replication during acute and early human immunodeficiency virus type 1 (HIV-1) infection, contributing to containment of the acute viral burst and establishment of the prognostically-important persisting viral load. Understanding mechanisms that impair CD8+ T cell-mediated control of HIV replication in primary infection is thus of importance. This study addressed the relative extent to which HIV-specific T cell responses are impacted by viral mutational escape versus reduction in response avidity during the first year of infection.</p> <p>Results</p> <p>18 patients presenting with symptomatic primary HIV-1 infection, most of whom subsequently established moderate-high persisting viral loads, were studied. HIV-specific T cell responses were mapped in each individual and responses to a subset of optimally-defined CD8+ T cell epitopes were followed from acute infection onwards to determine whether they were escaped or declined in avidity over time. During the first year of infection, sequence variation occurred in/around 26/33 epitopes studied (79%). In 82% of cases of intra-epitopic sequence variation, the mutation was confirmed to confer escape, although T cell responses were subsequently expanded to variant sequences in some cases. In contrast, < 10% of responses to index sequence epitopes declined in functional avidity over the same time-frame, and a similar proportion of responses actually exhibited an increase in functional avidity during this period.</p> <p>Conclusions</p> <p>Escape appears to constitute a much more important means of viral evasion of CD8+ T cell responses in acute and early HIV infection than decline in functional avidity of epitope-specific T cells. These findings support the design of vaccines to elicit T cell responses that are difficult for the virus to escape.</p

    Determinants of human immunodeficiency virus type 1 escape from the primary CD8+ cytotoxic T lymphocyte response

    Get PDF
    CD8+ cytotoxic T lymphocytes (CTLs) play an important role in containment of virus replication in primary human immunodeficiency virus (HIV) infection. HIV's ability to mutate to escape from CTL pressure is increasingly recognized; but comprehensive studies of escape from the CD8 T cell response in primary HIV infection are currently lacking. Here, we have fully characterized the primary CTL response to autologous virus Env, Gag, and Tat proteins in three patients, and investigated the extent, kinetics, and mechanisms of viral escape from epitope-specific components of the response. In all three individuals, we observed variation beginning within weeks of infection at epitope-containing sites in the viral quasispecies, which conferred escape by mechanisms including altered peptide presentation/recognition and altered antigen processing. The number of epitope-containing regions exhibiting evidence of early CTL escape ranged from 1 out of 21 in a subject who controlled viral replication effectively to 5 out of 7 in a subject who did not. Evaluation of the extent and kinetics of HIV-1 escape from >40 different epitope-specific CD8 T cell responses enabled analysis of factors determining escape and suggested that escape is restricted by costs to intrinsic viral fitness and by broad, codominant distribution of CTL-mediated pressure on viral replication

    Integrating In Silico and In Vitro Analysis of Peptide Binding Affinity to HLA-Cw*0102: A Bioinformatic Approach to the Prediction of New Epitopes

    Get PDF
    Background: Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102. Methodology/Findings: Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR) binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals chronically infected with HIV-1. Conclusions/Significance: A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is generally applicable to all T cell epitope identification problems in immunology and vaccinology

    The Journal of Experimental Medicine Determinants of Human Immunodeficiency Virus Type 1 Escape from the Primary CD8 Ο© Cytotoxic T Lymphocyte Response

    No full text
    Abstract CD8 Ο© cytotoxic T lymphocytes (CTLs) play an important role in containment of virus replication in primary human immunodeficiency virus (HIV) infection. HIV&apos;s ability to mutate to escape from CTL pressure is increasingly recognized; but comprehensive studies of escape from the CD8 T cell response in primary HIV infection are currently lacking. Here, we have fully characterized the primary CTL response to autologous virus Env, Gag, and Tat proteins in three patients, and investigated the extent, kinetics, and mechanisms of viral escape from epitopespecific components of the response. In all three individuals, we observed variation beginning within weeks of infection at epitope-containing sites in the viral quasispecies, which conferred escape by mechanisms including altered peptide presentation/recognition and altered antigen processing. The number of epitope-containing regions exhibiting evidence of early CTL escape ranged from 1 out of 21 in a subject who controlled viral replication effectively to 5 out of 7 in a subject who did not. Evaluation of the extent and kinetics of HIV-1 escape from ΟΎ 40 different epitope-specific CD8 T cell responses enabled analysis of factors determining escape and suggested that escape is restricted by costs to intrinsic viral fitness and by broad, codominant distribution of CTL-mediated pressure on viral replication

    Summary of amino acids at each position that favour or disfavour peptide binding to HLA-Cw*0102, as defined by the QSAR model.

    No full text
    a<p>Amino acids are included if they exceed a threshold of >Β±0.10 as favoured or disfavoured residues as shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0008095#pone-0008095-g001" target="_blank">Fig. 1</a>.</p>b<p>Amino acids are highlighted in bold if they exceed a threshold of >Β±0.20 as favoured or disfavoured residues as shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0008095#pone-0008095-g001" target="_blank">Fig. 1</a>.</p

    Dose-response titration of the peptide CAPAGFAIL.

    No full text
    <p>The responsiveness of T cells from two HIV-infected individuals to 10-fold dilutions of the peptide CAPAGFAIL was assessed by IFN-Ξ³ ELISPOT assay. The results shown are the specific response elicited at each peptide concentration, expressed as a percentage of the maximum response (that elicited by 10<sup>βˆ’5</sup> M peptide) observed in the individual concerned.</p
    corecore