436 research outputs found

    Control Algorithms and Simulated Environment Developed and Tested for Multiagent Robotics for Autonomous Inspection of Propulsion Systems

    Get PDF
    The NASA Glenn Research Center and academic partners are developing advanced multiagent robotic control algorithms that will enable the autonomous inspection and repair of future propulsion systems. In this application, on-wing engine inspections will be performed autonomously by large groups of cooperative miniature robots that will traverse the surfaces of engine components to search for damage. The eventual goal is to replace manual engine inspections that require expensive and time-consuming full engine teardowns and allow the early detection of problems that would otherwise result in catastrophic component failures. As a preliminary step toward the long-term realization of a practical working system, researchers are developing the technology to implement a proof-of-concept testbed demonstration. In a multiagent system, the individual agents are generally programmed with relatively simple controllers that define a limited set of behaviors. However, these behaviors are designed in such a way that, through the localized interaction among individual agents and between the agents and the environment, they result in self-organized, emergent group behavior that can solve a given complex problem, such as cooperative inspection. One advantage to the multiagent approach is that it allows for robustness and fault tolerance through redundancy in task handling. In addition, the relatively simple agent controllers demand minimal computational capability, which in turn allows for greater miniaturization of the robotic agents

    Arsenic Trisulfide Inorganic Photoresist for Three-Dimensional Photolithography

    Get PDF
    The aim of this thesis is to investigate and develop a material that has both a high refractive index and spatially localizable photoluminescence while being processable like a conventional photoresist, so that it can be used with the 3D direct laser writing technique. The result obtained shows that this has been reduced to practice to enable the creation of 3D photonic crystals with full-photonic bandgaps, and the opportunity to incorporate photoluminescent guests at specific locations

    Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application

    Get PDF
    The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool

    Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    Get PDF
    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms

    A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    Get PDF
    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation

    Sensor Data Qualification System (SDQS) Implementation Study

    Get PDF
    The Sensor Data Qualification System (SDQS) is being developed to provide a sensor fault detection capability for NASA s next-generation launch vehicles. In addition to traditional data qualification techniques (such as limit checks, rate-of-change checks and hardware redundancy checks), SDQS can provide augmented capability through additional techniques that exploit analytical redundancy relationships to enable faster and more sensitive sensor fault detection. This paper documents the results of a study that was conducted to determine the best approach for implementing a SDQS network configuration that spans multiple subsystems, similar to those that may be implemented on future vehicles. The best approach is defined as one that most minimizes computational resource requirements without impacting the detection of sensor failures

    Discrete Data Qualification System and Method Comprising Noise Series Fault Detection

    Get PDF
    A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions

    Application of tri-colour, dual fusion fluorescence in situ hybridization (FISH) system for the characterization of BCR-ABL1 fusion in chronic myelogenous leukaemia (CML) and residual disease monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied the application of the <it>BCR-ABL1 </it>+ 9q34 tri-colour dual fusion fluorescence <it>in situ </it>hybridization (FISH) system in the characterization of fusion signal pattern and the monitoring of residual disease in chronic myelogenous leukaemia (CML). The signal constellation on metaphases with the tri-colour dual fusion system was defined. The knowledge of various signal patterns obtained from the different genetic rearrangements was further applied to the analysis of hybridization signals on interphase nuclei.</p> <p>Methods</p> <p><it>BCR-ABL1 </it>dual colour, dual fusion FISH (D-FISH) was performed on diagnostic samples of 22 CML patients. The tri-colour FISH system was performed on cases that showed aberrant signal patterns other than the classical 1 green (G) 1 orange (O) 2 fusions (F). Using the aqua band-pass filter, random signal overlap in interphase nuclei would be indicated by the presence of an aqua signal (<it>ASS1</it>), while genuine fusion was represented by the absence of the <it>ASS1 </it>signal.</p> <p>Results</p> <p>Using the D-FISH system, the signal patterns could be categorized into 4 groups: group 1 (n = 17) showed the classical 1G1O2F; group 2 (n = 2) showed 2G1O1F indicating <it>ABL1 </it>deletion; group 3 (n = 1) showed 1G2O1F indicating <it>BCR </it>deletion; group 4 (n = 2) with 1G1O1F indicating reciprocal <it>ABL1-BCR </it>deletion. The tri-colour dual fusion system correlated with the D-FISH system for cases with der(9) deletion. The added aqua-labelled <it>ASS1 </it>probe was useful in differentiating random signal overlap from genuine <it>BCR-ABL1 </it>fusion in the interphase cells (group 4).</p> <p>Conclusion</p> <p>Although the D-FISH probe was valuable in establishing the different patterns of aberrant signals and monitoring patients with the classic 2-fusion signals in CML, the tri-colour dual fusion probe should be used for patients with der(9) deletion to monitor response to treatment.</p

    Towards Run-time Assurance of Advanced Propulsion Algorithms

    Get PDF
    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed

    Runtime Assurance Protection for Advanced Turbofan Engine Control

    Get PDF
    This paper describes technical progress made in the application of run time assurance (RTA) methods to turbofan engines with advanced propulsion control algorithms that are employed to improve engine performance. It is assumed that the advanced algorithms cannot be fully certified using current verification and validation approaches and therefore need to be continually monitored by an RTA system that ensures safe operation. However, current turbofan engine control systems utilize engine protection logic for safe combustion dynamics and stable airflow through the engine. It was determined that the engine protection logic should continue to be used to provide system safety and should be considered as a part of the overall RTA system. The additional function that an RTA system provides is to perform diagnostics on anomalous conditions to determine if these conditions are being caused by errors in the advanced controller. If this is the case, the RTA system switches operation to a trusted reversionary controller. Initial studies were performed to demonstrate this benefit. The other focus was to improve the performance of the engine protection logic, which was deemed too conservative and reduced engine performance during transient operations. It was determined that the conservative response was due to poor tuning of one of the controller channels within the protection logic. An automatic tuning algorithm was implemented to optimize the protection logic control gains based on minimizing tracking error. Improved tracking responses were observed with no change to the existing protection logic control architecture
    corecore