90 research outputs found

    Hormonal control of the metabolic machinery of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most fatal malignancies worldwide. It is an aggressive cancer with low cure rate, frequent metastasis, and highly resistant to conventional chemotherapies. Better knowledge regarding the molecular and metabolic alterations in HCC will be instrumental to the development of novel therapeutic interventions against HCC. In the August 2015 issue of Hepatology, Nie et al. reports an important molecular pathway that contributes to the Warburg Effect in HCC. They have beautifully demonstrated that the loss of a component of a hormonal system, the mineralocorticoid receptor (MR), reprogrammed the metabolic machinery of HCC cells to aerobic glycolysis through the miR-338-3p-PKL/R axis. The implication could be that in addition to drugs that directly target the metabolic enzymes in cancer cells, more translational efforts could be focused on the development of drugs that involve the activation of the MR-aldosterone system or other hormonal systems to target the Warburg effect.published_or_final_versio

    EZH2-Mediated H3K27me3 Is Involved in Epigenetic Repression of Deleted in Liver Cancer 1 in Human Cancers

    Get PDF
    Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.published_or_final_versio

    Incidence and Risk Factors for Retinopathy of Prematurity in Multiple Gestations: a Chinese population study

    Get PDF
    To determine the incidence and risk factors of retinopathy of prematurity (ROP) among new-born Chinese infants of multiple gestations. A retrospective review of medical records was performed for all neonates of multiple gestations screened for ROP between January 2007 and December 2012 in 2 neonatal intensive care units in Hong Kong. Screening was offered to very low birth weight (VLBW; ≤1500g) and/or preterm (gestation ≤32 weeks) neonates using the Royal College of Ophthalmologists ROP guideline and the International Classification of ROP by 3 pediatric ophthalmologists. Maternal and neonatal covariates were analyzed using univariate and multivariate regression analyses for both ROP and Type 1 ROP. A total of 153 Chinese infants of multiple gestations were included in the study. The mean gestational age (GA) was 30.8±2.4 weeks and the mean birth weight (BW) was 1284.8±267.4g. The incidence of ROP and Type 1 ROP was 11.8% and 3.9%, respectively. On univariate analysis, younger GA, lighter birth weight, postnatal hypotension, inotropes use, bronchopulmonary disease, and intraventricular hemorrhage were common independent risk factors for the development of ROP and Type 1 ROP (all P≤0.04). On multivariate analysis, younger GA, surfactant use, invasive mechanical ventilation, higher mean oxygen concentration, thrombocytopenia, intraventricular hemorrahage, total parental nutrition, and hypoglycemia were significant risk factors for ROP. For Type 1 ROP, there were no significant dependent risk factors. In preterm Chinese infants born from multiple gestations, prematurity, lighter weight, postnatal hypotension, inotropes use, bronchopulmonary dysplasia, and an intraventricular hemorrhage were common independent risk factors for the development of ROP and Type 1 ROP.published_or_final_versio

    PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma

    Get PDF
    published_or_final_versio

    Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis

    Get PDF
    Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.published_or_final_versio

    MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis

    Get PDF
    MiR-200 family is an important regulator of epithelial-mesenchymal transition and has been implicated in human carcinogenesis. However, their expression and functions in human cancers remain controversial. In the work presented here, we showed that miR-200 family members were frequently down-regulated in hepatocellular carcinoma (HCC). Although all five members of miR-200 family inhibited ZEB1/2 expression in HCC cell lines, we showed that overexpression only of the miR-200b/200c/429 subfamily, but not the miR-200a/141 subfamily, resulted in impeded HCC cell migration. Further investigations led to the identification of RhoA and ROCK2 as specific down-stream targets of the miR-200b/200c/429 subfamily. We demonstrated that the miR-200b/200c/429 subfamily inhibited HCC cell migration through modulating Rho/ROCK mediated cell cytoskeletal reorganization and cell-substratum adhesion. Re-expression of miR-200b significantly suppressed lung metastasis of HCC cells in an orthotopic liver implantation model in vivo. In conclusion, our findings identified the miR-200b/200c/429 subfamily as metastasis suppressor microRNAs in human HCC and highlighted the functional discrepancy among miR-200 family members.published_or_final_versio

    Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma

    Get PDF
    published_or_final_versio
    corecore