3,160 research outputs found

    Defining the Binding Region in Factor H to Develop a Therapeutic Factor H-Fc Fusion Protein against Non-Typeable Haemophilus influenzae

    Get PDF
    Non-typeable Haemophilus influenzae (NTHi) cause a range of illnesses including otitis media, sinusitis, and exacerbation of chronic obstructive pulmonary disease, infections that contribute to the problem of antibiotic resistance and are themselves often intractable to standard antibiotic treatment regimens. We investigated a strategy to exploit binding of the complement inhibitor Factor H (FH) to NTHi as a functional target for an immunotherapeutic containing the NTHi binding domain of FH fused to the Fc domain of IgG1. Chimeric proteins containing the regions that most FH-binding bacteria use to engage human FH, domains 6 and 7 (FH6,7/Fc) and/or 18 through 20 (FH18-20/Fc), were evaluated for binding to NTHi. FH6,7/Fc bound strongly to each of seven NTHi clinical isolates tested and efficiently promoted complement-mediated killing by normal human serum. FH18-20/Fc bound weakly to three of the strains but did not promote complement dependent killing. Outer-membrane protein P5 has been implicated in FH binding by NTHi, and FH6,7/Fc binding was greatly diminished in five of seven P5 deficient isogenic mutant strains tested, implicating an alternative FH binding protein in some strains. Binding of FH18-20/Fc was decreased in the P5 mutant of one strain. A murine model was used to evaluate potential therapeutic application of FH6,7/Fc. FH6,7/Fc efficiently promoted binding of C3 to NTHi exposed to mouse serum, and intranasal delivery of FH6,7/Fc resulted in significantly enhanced clearance of NTHi from the lung. Moreover, a P5 deficient mutant was attenuated for survival in the lung model, suggesting that escape mutants lacking P5 would be less likely to replace strains susceptible to FH6,7/Fc. These results provide evidence for the potential utility of FH6,7/Fc as a therapeutic against NTHi lung infection. FH binding is a common property of many respiratory tract pathogens and FH/Fc chimeras may represent promising alternative or adjunctive therapeutics against such infections, which are often polymicrobial

    Endoscopic vs Robotic Thyroidectomy: Which is Better?

    Get PDF
    published_or_final_versionSpringer Open Choice, 21 Feb 201

    Exploiting Connections for Viral Replication.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 (coronavirus disease 2019) pandemic, is a positive strand RNA (+RNA) virus. Like other +RNA viruses, SARS-CoV-2 is dependent on host cell metabolic machinery to survive and replicate, remodeling cellular membranes to generate sites of viral replication. Viral RNA-containing double-membrane vesicles (DMVs) are a striking feature of +RNA viral replication and are abundant in SARS-CoV-2-infected cells. Their generation involves rewiring of host lipid metabolism, including lipid biosynthetic pathways. Viruses can also redirect lipids from host cell organelles; lipid exchange at membrane contact sites, where the membranes of adjacent organelles are in close apposition, has been implicated in the replication of several +RNA viruses. Here we review current understanding of DMV biogenesis. With a focus on the exploitation of contact site machinery by +RNA viruses to generate replication organelles, we discuss evidence that similar mechanisms support SARS-CoV-2 replication, protecting its RNA from the host cell immune response

    First Detection of HCO+^+ Absorption in the Magellanic System

    Full text link
    We present the first detection of HCO+^+ absorption in the Magellanic System. Using the Australia Telescope Compact Array (ATCA), we observed 9 extragalactic radio continuum sources behind the Magellanic System and detected HCO+^+ absorption towards one source located behind the leading edge of the Magellanic Bridge. The detection is located at LSR velocity of v=214.0±0.4kms1v=214.0 \pm 0.4\rm\,km\,s^{-1}, with a full width at half maximum of Δv=4.5±1.0kms1\Delta v=4.5\pm 1.0\rm\,km\,s^{-1} and optical depth of τ(HCO+)=0.10±0.02\tau(\rm HCO^+)=0.10\pm 0.02. Although there is abundant neutral hydrogen (HI) surrounding the sightline in position-velocity space, at the exact location of the absorber the HI column density is low, <1020cm2<10^{20}\rm\,cm^{-2}, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remains unclear, dynamical events such as HI flows and cloud collisions in this interacting system likely play an important role.Comment: Accepted for publication in ApJ. 6 pages, 2 figures, 2 table

    Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution.

    Get PDF
    Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved caspase-9. Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly increased cleaved caspase-3, -8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate that Thy-1, in a manner dependent upon its glycophosphatidylinositol anchor and lipid raft localization, regulates apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 deficient (Thy1-/-) mice displayed persistence of myofibroblasts in the resolution phase of bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis resolution. Apoptosis of myofibroblasts is decreased in Thy1-/- mice in the resolution phase. Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in initiating myofibroblast apoptosis that heralds the termination of the reparative response to bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/apoptosis should lead to novel therapeutic interventions for lung fibrosis

    Distinct sensory representations of wind and near-field sound in the Drosophila brain

    Get PDF
    Behavioural responses to wind are thought to have a critical role in controlling the dispersal and population genetics of wild Drosophila species^(1, 2), as well as their navigation in flight^3, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains^4, exhibits robust wind-induced suppression of locomotion in response to air currents delivered at speeds normally encountered in nature^(1, 2). Here we identify wind-sensitive neurons in Johnston's organ, an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in refs 5 and 6). Using enhancer trap lines targeted to different subsets of Johnston's organ neurons^7, and a genetically encoded calcium indicator^8, we show that wind and near-field sound (courtship song) activate distinct populations of Johnston's organ neurons, which project to different regions of the antennal and mechanosensory motor centre in the central brain. Selective genetic ablation of wind-sensitive Johnston's organ neurons in the antenna abolishes wind-induced suppression of locomotion behaviour, without impairing hearing. Moreover, different neuronal subsets within the wind-sensitive population respond to different directions of arista deflection caused by air flow and project to different regions of the antennal and mechanosensory motor centre, providing a rudimentary map of wind direction in the brain. Importantly, sound- and wind-sensitive Johnston's organ neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, whereas the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar air flow, respectively. These data identify wind-sensitive neurons in Johnston's organ, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements using a common sensory organ

    High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids.

    Get PDF
    BackgroundPatients with systemic lupus erythematosus (SLE) are at increased risk of atherosclerosis, even after accounting for traditional risk factors. High levels of leptin and low levels of adiponectin are associated with both atherosclerosis and immunomodulatory functions in the general population.ObjectiveTo examine the association between these adipokines and subclinical atherosclerosis in SLE, and also with other known inflammatory biomarkers of atherosclerosis.MethodsCarotid ultrasonography was performed in 250 women with SLE and 122 controls. Plasma leptin and adiponectin levels were measured. Lipoprotein a (Lp(a)), oxidised phospholipids on apoB100 (OxPL/apoB100), paraoxonase, apoA-1 and inflammatory high-density lipoprotein (HDL) function were also assessed.ResultsLeptin levels were significantly higher in patients with SLE than in controls (23.7±28.0 vs 13.3±12.9 ng/ml, p&lt;0.001). Leptin was also higher in the 43 patients with SLE with plaque than without plaque (36.4±32.3 vs 20.9±26.4 ng/ml, p=0.002). After multivariate analysis, the only significant factors associated with plaque in SLE were leptin levels in the highest quartile (≥29.5 ng/ml) (OR=2.8, p=0.03), proinflammatory HDL (piHDL) (OR=12.8, p&lt;0.001), age (OR=1.1, p&lt;0.001), tobacco use (OR=7.7, p=0.03) and hypertension (OR=3.0, p=0.01). Adiponectin levels were not significantly associated with plaque in our cohort. A significant correlation between leptin and piHDL function (p&lt;0.001), Lp(a) (p=0.01) and OxPL/apoB100 (p=0.02) was also present.ConclusionsHigh leptin levels greatly increase the risk of subclinical atherosclerosis in SLE, and are also associated with an increase in inflammatory biomarkers of atherosclerosis such as piHDL, Lp(a) and OxPL/apoB100. High leptin levels may help to identify patients with SLE at risk of atherosclerosis

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed
    corecore