26 research outputs found

    Artificial Modulation of the Gating Behavior of a K+ Channel in a KvAP-DNA Chimera

    Get PDF
    We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel

    Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells

    Get PDF
    HERG (human ether-à-go-go-related gene) K+ currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10–15 mV. This result indicated that HERG K+ conductance contributes considerably to the maintenance of the resting potential of about −45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth

    Rapid Internalization of the Oncogenic K+ Channel KV10.1

    Get PDF
    KV10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by KV10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, KV10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling KV10.1 intracellular distribution and life cycle. To follow plasma membrane KV10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected KV10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that KV10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal KV10.1 surface levels. Brief KV10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against KV10.1 on tumor cells

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps.

    No full text
    We describe two enhancements of the planar bilayer recording method which enable low-noise recordings of single-channel currents activated by voltage steps in planar bilayers formed on apertures in partitions separating two open chambers. First, we have refined a simple and effective procedure for making small bilayer apertures (25-80 micrograms diam) in plastic cups. These apertures combine the favorable properties of very thin edges, good mechanical strength, and low stray capacitance. In addition to enabling formation of small, low-capacitance bilayers, this aperture design also minimizes the access resistance to the bilayer, thereby improving the low-noise performance. Second, we have used a patch-clamp headstage modified to provide logic-controlled switching between a high-gain (50 G omega) feedback resistor for high-resolution recording and a low-gain (50 M omega) feedback resistor for rapid charging of the bilayer capacitance. The gain is switched from high to low before a voltage step and then back to high gain 25 microseconds after the step. With digital subtraction of the residual currents produced by the gain switching and electrostrictive changes in bilayer capacitance, we can achieve a steady current baseline within 1 ms after the voltage step. These enhancements broaden the range of experimental applications for the planar bilayer method by combining the high resolution previously attained only with small bilayers formed on pipette tips with the flexibility of experimental design possible with planar bilayers in open chambers. We illustrate application of these methods with recordings of the voltage-step activation of a voltage-gated potassium channel
    corecore