417 research outputs found
Aspasia Mirault
Aspasia Mirault, a Mulatto, was born in Santo Domingo and immigrated to the United States in 1800 as a free person of color. She probably immigrated to the United States because of the unrest in revolution-ravished Haiti. As Ms. Mirault was not born in Chatham County, no county records exist concerning her date of birth, and marital or family status. In William Harden\u27s Recollections of a Long and Satisfactory Life, she is said to have had a husband named Simon Mirault; however, no other sources confirmed the marriage.https://digitalcommons.georgiasouthern.edu/sav-bios-lane/1180/thumbnail.jp
Exploring the high-pressure materials genome
A thorough in situ characterization of materials at extreme conditions is
challenging, and computational tools such as crystal structural search methods
in combination with ab initio calculations are widely used to guide experiments
by predicting the composition, structure, and properties of high-pressure
compounds. However, such techniques are usually computationally expensive and
not suitable for large-scale combinatorial exploration. On the other hand,
data-driven computational approaches using large materials databases are useful
for the analysis of energetics and stability of hundreds of thousands of
compounds, but their utility for materials discovery is largely limited to
idealized conditions of zero temperature and pressure. Here, we present a novel
framework combining the two computational approaches, using a simple linear
approximation to the enthalpy of a compound in conjunction with
ambient-conditions data currently available in high-throughput databases of
calculated materials properties. We demonstrate its utility by explaining the
occurrence of phases in nature that are not ground states at ambient conditions
and estimating the pressures at which such ambient-metastable phases become
thermodynamically accessible, as well as guiding the exploration of
ambient-immiscible binary systems via sophisticated structural search methods
to discover new stable high-pressure phases.Comment: 14 pages, 6 figure
Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions
In alloys cluster expansions (CE) are increasingly used to combine
first-principles electronic-structure and Monte Carlo methods to predict
thermodynamic properties. As a basis-set expansion in terms of lattice
geometrical clusters and effective cluster interactions, the CE is exact if
infinite, but is tractable only if truncated. Yet until now a truncation
procedure was not well-defined and did not guarantee a reliable truncated CE.
We present an optimal truncation procedure for CE basis sets that provides
reliable thermodynamics. We then exemplify its importance in NiV, where the
CE has failed unpredictably, and now show agreement to a range of measured
values, predict new low-energy structures, and explain the cause of previous
failures.Comment: 4 pages, 2 figure
Point-charge electrostatics in disordered alloys
A simple analytic model of point-ion electrostatics has been previously
proposed in which the magnitude of the net charge q_i on each atom in an
ordered or random alloy depends linearly on the number N_i^(1) of unlike
neighbors in its first coordination shell. Point charges extracted from recent
large supercell (256-432 atom) local density approximation (LDA) calculations
of Cu-Zn random alloys now enable an assessment of the physical validity and
accuracy of the simple model. We find that this model accurately describes (i)
the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes
of total electrostatic energies in random alloys, (iii) the relationships
between constant-occupation-averaged charges and Coulomb shifts
(i.e., the average over all sites occupied by either or atoms) in the
random alloy, and (iv) the linear relation between the site charge q_i and the
constant- charge-averaged Coulomb shift (i.e., the average over all sites with
the same charge) for fcc alloys. However, for bcc alloys the fluctuations
predicted by the model in the q_i vs. V_i relation exceed those found in the
LDA supercell calculations. We find that (a) the fluctuations present in the
model have a vanishing contribution to the electrostatic energy. (b)
Generalizing the model to include a dependence of the charge on the atoms in
the first three (two) shells in bcc (fcc) - rather than the first shell only -
removes the fluctuations, in complete agreement with the LDA data. We also
demonstrate an efficient way to extract charge transfer parameters of the
generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig,
to be published in Phys. Rev.
Search for a Solution of the Pioneer Anomaly
In 1972 and 1973 the Pioneer 10 and 11 missions were launched. They were the
first to explore the outer solar system and achieved stunning breakthroughs in
deep-space exploration. But beginning in about 1980 an unmodeled force of \sim
8 \times 10^{-8} cm/s^2, directed approximately towards the Sun, appeared in
the tracking data. It later was unambiguously verified as being in the data and
not an artifact. The cause remains unknown (although radiant heat remains a
likely origin). With time more and more effort has gone into understanding this
anomaly (and also possibly related effects). We review the situation and
describe ongoing programs to resolve the issue.Comment: 24 pages 8 figure
First principles modelling of magnesium titanium hydrides
Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved
(de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin
films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a
hydride material. In this paper we study the structure and stability of
Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density
functional theory. We give evidence for a fluorite to rutile phase transition
at a critical composition x(c)= 0.8-0.9, which correlates with the
experimentally observed sharp decrease in (de)hydrogenation rates at this
composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi
level, composed of Ti d states. Disorder in the positions of the Ti atoms
easily destroys the metallic plasma, however, which suppresses the optical
reflection. Interband transitions result in a featureless optical absorption
over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table
Using Early Data to Illuminate the Pioneer Anomaly
Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at
distances between about 20 - 70 AU from the Sun has consistently indicated the
presence of an unmodeled, small, constant, Doppler blue shift drift of order 6
\times 10^{-9} Hz/s. After accounting for systematics, this drift can be
interpreted as a constant acceleration of a_P= (8.74 \pm 1.33) \times 10^{-8}
cm/s^2 directed towards the Sun, or perhaps as a time acceleration of a_t =
(2.92 \pm 0.44)\times 10^{-18} s/s^2. Although it is suspected that there is a
systematic origin to this anomaly, none has been unambiguously demonstrated. We
review the current status of the anomaly, and then point out how the analysis
of early data, which was never analyzed in detail, could allow a more clear
understanding of the origin of the anomaly, be it a systematic or a
manifestation of unsuspected physics.Comment: 19 pages, 6 figures, 2 tables, additional materia
Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals
Epitaxial strain energies of epitaxial films and bulk superlattices are
studied via first-principles total energy calculations using the local-density
approximation. Anharmonic effects due to large lattice mismatch, beyond the
reach of the harmonic elasticity theory, are found to be very important in
Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that
is the elastically soft direction for biaxial expansion of Cu and Ni, but it is
for large biaxial compression of Cu, Ag, and Au. The stability of
superlattices is discussed in terms of the coherency strain and interfacial
energies. We find that in phase-separating systems such as Cu-Ag the
superlattice formation energies decrease with superlattice period, and the
interfacial energy is positive. Superlattices are formed easiest on (001) and
hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the
formation energy of superlattices increases with period, and interfacial
energies are negative. These superlattices are formed easiest on (001) or (110)
and hardest on (111) substrates. For Ni-Au we find a hybrid behavior:
superlattices along and like in phase-separating systems, while for
they behave like in ordering systems. Finally, recent experimental
results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys,
immiscible in the bulk form, are explained in terms of destabilization of the
phase separated state due to lattice mismatch between the substrate and
constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in
Physical Review
Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic
Monte Carlo (MC) simulations of lattice models are a widely used way to
compute thermodynamic properties of substitutional alloys. A limitation to
their more widespread use is the difficulty of driving a MC simulation in order
to obtain the desired quantities. To address this problem, we have devised a
variety of high-level algorithms that serve as an interface between the user
and a traditional MC code. The user specifies the goals sought in a high-level
form that our algorithms convert into elementary tasks to be performed by a
standard MC code. For instance, our algorithms permit the determination of the
free energy of an alloy phase over its entire region of stability within a
specified accuracy, without requiring any user intervention during the
calculations. Our algorithms also enable the direct determination of
composition-temperature phase boundaries without requiring the calculation of
the whole free energy surface of the alloy system
Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys
A model is tested to rapidly evaluate the vibrational properties of alloys
with site disorder. It is shown that length-dependent transferable force
constants exist, and can be used to accurately predict the vibrational entropy
of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and
Cu-Pd. For each relevant force constant, a length- dependent function is
determined and fitted to force constants obtained from first-principles
pseudopotential calculations. We show that these transferable force constants
can accurately predict vibrational entropies of L1-ordered and disordered
phases in CuAu, AuPd, PdAu, CuPd, and PdAu. In
addition, we calculate the vibrational entropy difference between
L1-ordered and disordered phases of AuCu and CuPt.Comment: 9 pages, 6 figures, 3 table
- …