417 research outputs found

    Aspasia Mirault

    Get PDF
    Aspasia Mirault, a Mulatto, was born in Santo Domingo and immigrated to the United States in 1800 as a free person of color. She probably immigrated to the United States because of the unrest in revolution-ravished Haiti. As Ms. Mirault was not born in Chatham County, no county records exist concerning her date of birth, and marital or family status. In William Harden\u27s Recollections of a Long and Satisfactory Life, she is said to have had a husband named Simon Mirault; however, no other sources confirmed the marriage.https://digitalcommons.georgiasouthern.edu/sav-bios-lane/1180/thumbnail.jp

    Exploring the high-pressure materials genome

    Full text link
    A thorough in situ characterization of materials at extreme conditions is challenging, and computational tools such as crystal structural search methods in combination with ab initio calculations are widely used to guide experiments by predicting the composition, structure, and properties of high-pressure compounds. However, such techniques are usually computationally expensive and not suitable for large-scale combinatorial exploration. On the other hand, data-driven computational approaches using large materials databases are useful for the analysis of energetics and stability of hundreds of thousands of compounds, but their utility for materials discovery is largely limited to idealized conditions of zero temperature and pressure. Here, we present a novel framework combining the two computational approaches, using a simple linear approximation to the enthalpy of a compound in conjunction with ambient-conditions data currently available in high-throughput databases of calculated materials properties. We demonstrate its utility by explaining the occurrence of phases in nature that are not ground states at ambient conditions and estimating the pressures at which such ambient-metastable phases become thermodynamically accessible, as well as guiding the exploration of ambient-immiscible binary systems via sophisticated structural search methods to discover new stable high-pressure phases.Comment: 14 pages, 6 figure

    Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions

    Full text link
    In alloys cluster expansions (CE) are increasingly used to combine first-principles electronic-structure and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well-defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3_3V, where the CE has failed unpredictably, and now show agreement to a range of measured values, predict new low-energy structures, and explain the cause of previous failures.Comment: 4 pages, 2 figure

    Point-charge electrostatics in disordered alloys

    Full text link
    A simple analytic model of point-ion electrostatics has been previously proposed in which the magnitude of the net charge q_i on each atom in an ordered or random alloy depends linearly on the number N_i^(1) of unlike neighbors in its first coordination shell. Point charges extracted from recent large supercell (256-432 atom) local density approximation (LDA) calculations of Cu-Zn random alloys now enable an assessment of the physical validity and accuracy of the simple model. We find that this model accurately describes (i) the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes of total electrostatic energies in random alloys, (iii) the relationships between constant-occupation-averaged charges and Coulomb shifts (i.e., the average over all sites occupied by either AA or BB atoms) in the random alloy, and (iv) the linear relation between the site charge q_i and the constant- charge-averaged Coulomb shift (i.e., the average over all sites with the same charge) for fcc alloys. However, for bcc alloys the fluctuations predicted by the model in the q_i vs. V_i relation exceed those found in the LDA supercell calculations. We find that (a) the fluctuations present in the model have a vanishing contribution to the electrostatic energy. (b) Generalizing the model to include a dependence of the charge on the atoms in the first three (two) shells in bcc (fcc) - rather than the first shell only - removes the fluctuations, in complete agreement with the LDA data. We also demonstrate an efficient way to extract charge transfer parameters of the generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig, to be published in Phys. Rev.

    Search for a Solution of the Pioneer Anomaly

    Full text link
    In 1972 and 1973 the Pioneer 10 and 11 missions were launched. They were the first to explore the outer solar system and achieved stunning breakthroughs in deep-space exploration. But beginning in about 1980 an unmodeled force of \sim 8 \times 10^{-8} cm/s^2, directed approximately towards the Sun, appeared in the tracking data. It later was unambiguously verified as being in the data and not an artifact. The cause remains unknown (although radiant heat remains a likely origin). With time more and more effort has gone into understanding this anomaly (and also possibly related effects). We review the situation and describe ongoing programs to resolve the issue.Comment: 24 pages 8 figure

    First principles modelling of magnesium titanium hydrides

    Get PDF
    Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c)= 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table

    Using Early Data to Illuminate the Pioneer Anomaly

    Full text link
    Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at distances between about 20 - 70 AU from the Sun has consistently indicated the presence of an unmodeled, small, constant, Doppler blue shift drift of order 6 \times 10^{-9} Hz/s. After accounting for systematics, this drift can be interpreted as a constant acceleration of a_P= (8.74 \pm 1.33) \times 10^{-8} cm/s^2 directed towards the Sun, or perhaps as a time acceleration of a_t = (2.92 \pm 0.44)\times 10^{-18} s/s^2. Although it is suspected that there is a systematic origin to this anomaly, none has been unambiguously demonstrated. We review the current status of the anomaly, and then point out how the analysis of early data, which was never analyzed in detail, could allow a more clear understanding of the origin of the anomaly, be it a systematic or a manifestation of unsuspected physics.Comment: 19 pages, 6 figures, 2 tables, additional materia

    Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals

    Full text link
    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that is the elastically soft direction for biaxial expansion of Cu and Ni, but it is for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase-separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along and like in phase-separating systems, while for they behave like in ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in Physical Review

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys

    Get PDF
    A model is tested to rapidly evaluate the vibrational properties of alloys with site disorder. It is shown that length-dependent transferable force constants exist, and can be used to accurately predict the vibrational entropy of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and Cu-Pd. For each relevant force constant, a length- dependent function is determined and fitted to force constants obtained from first-principles pseudopotential calculations. We show that these transferable force constants can accurately predict vibrational entropies of L12_{2}-ordered and disordered phases in Cu3_{3}Au, Au3_{3}Pd, Pd3_{3}Au, Cu3_{3}Pd, and Pd3_{3}Au. In addition, we calculate the vibrational entropy difference between L12_{2}-ordered and disordered phases of Au3_{3}Cu and Cu3_{3}Pt.Comment: 9 pages, 6 figures, 3 table
    • …
    corecore