5,320 research outputs found

    Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    Full text link
    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons.Comment: 20 pages, 19 figures, version accepted for publication in EPJA special volume on Nuclear Symmetry Energ

    Composition and thermodynamics of nuclear matter with light clusters

    Full text link
    We investigate nuclear matter at finite temperature and density, including the formation of light clusters up to the alpha particle The novel feature of this work is to include the formation of clusters as well as their dissolution due to medium effects in a systematic way using two many-body theories: a microscopic quantum statistical (QS) approach and a generalized relativistic mean field (RMF) model. Nucleons and clusters are modified by medium effects. Both approaches reproduce the limiting cases of nuclear statistical equilibrium (NSE) at low densities and cluster-free nuclear matter at high densities. The treatment of the cluster dissociation is based on the Mott effect due to Pauli blocking, implemented in slightly different ways in the QS and the generalized RMF approaches. We compare the numerical results of these models for cluster abundances and thermodynamics in the region of medium excitation energies with temperatures T <= 20 MeV and baryon number densities from zero to a few times saturation density. The effect of cluster formation on the liquid-gas phase transition and on the density dependence of the symmetry energy is studied. Comparison is made with other theoretical approaches, in particular those, which are commonly used in astrophysical calculations. The results are relevant for heavy-ion collisions and astrophysical applications.Comment: 32 pages, 15 figures, minor corrections, accepted for publication in Physical Review

    Mechanisms for Direct Breakup Reactions

    Get PDF
    We review some simple mechanisms of breakup in nuclear reactions. We mention the spectator breakup, which is described in the post-form DWBA. The relation to other formulations is also indicated. An especially important mechanism is Coulomb dissociation. It is a distinct advantage that the perturbation due to the electric field of the nucleus is exactly known. Therefore firm conclusions can be drawn from such measurements. Some new applications of Coulomb dissociation for nuclear astrophysics are discussed.Comment: 17 pages, 5 figures, to appear in the proceedings of the RCNP-TMU Symposium on Spins in Nuclear and Hadronic Reactions, October 16-18 199

    Cluster virial expansion for nuclear matter within a quasiparticle statistical approach

    Full text link
    Correlations in interacting many-particle systems can lead to the formation of clusters, in particular bound states and resonances. Systematic quantum statistical approaches allow to combine the nuclear statistical equilibrium description (law of mass action) with mean-field concepts. A chemical picture, which treats the clusters as distinct entities, serves as an intuitive concept to treat the low-density limit. Within a generalized Beth-Uhlenbeck approach, the quasiparticle virial expansion is extended to include arbitrary clusters, where special attention must be paid to avoid inconsistencies such as double counting. Correlations are suppressed with increasing density due to Pauli blocking. The contribution of the continuum to the virial coefficients can be reduced by considering clusters explicitly and introducing quasiparticle energies. The cluster-virial expansion for nuclear matter joins known benchmarks at low densities with those near saturation density.Comment: 18 pages, 6 figures, 2 table

    Transition from a phase-segregated state to single-phase incommensurate sodium ordering in Na_xCoO_2 with x \approx 0.53

    Get PDF
    Synchrotron X-ray diffraction investigations of two single crystals of Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53 0) at room-temperature. The incommensurate (qq0) superstructure exists between 220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a broad plateau at the latter value between 260 K and 360 K. On cooling, unusual reversible phase segregation into two volume fractions is observed. Below 220 K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50 superstructure, while a second volume fraction with x = 0.55 exhibits another commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell. We argue that the commensurate-to-incommensurate transition is an intrinsic feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.Comment: Corrected/improved versio

    Religiosity and Sexual Risk Behaviors Among Latina Adolescents: Trends from 1995 to 2008

    Get PDF
    Purpose: The purpose of this study was to determine trends in the influence of religiosity on sexual activity of Latina adolescents in the United States from 1995 to 2008 and to determine if differences existed between the Mexican American and other Latina groups. Methods: The sample comprised the subset of unmarried, 15–21-year-old (mean 17 years) Latina female respondents in the 1995 (n=267), 2002 (n=306), and 2006–2008 (n=400) National Survey of Family Growth (NSFG) datasets. Associations between religiosity (importance of religion and service attendance) and history of ever having sex, number of sex partners, and age of sexual debut were investigated. Results: Less than one half of Latinas in 1995 (44%) and in 2006–2008 (44%) reported that religion was very important to them, whereas in 2002, 50% reported it was important. Only in 1995 did Latinas who viewed religion as very important have a significantly lower level of sexual initiation. In 1995 and in 2006–2008, Latinas who held religion as very important had significantly fewer partners. In all three cohorts, the higher religious importance group had higher virgin survival rates. Across cohorts, approximately one third of respondents reported frequent religious attendance. In all cohorts, frequent attenders were less likely to have had sex, had fewer partners, and had older age at sexual debut. The survival rate as virgins for Mexican origin Latinas was higher in 1995 and 2002 compared to non-Mexican Latinas but was almost the same in 2006–2008. Conclusions: Religiosity had a protective association with sexual activity among Latina adolescents. The association of importance of religion with sexual activity has diminished from 1995 to 2008, however, whereas the importance of service attendance has remained stable. The influence of religion was more apparent among the Latinas of Mexican origin, but this greater influence also diminished by 2006–2008

    Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    Get PDF
    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals
    corecore