5,418 research outputs found

    New Facts About Factor-Demand Dynamics: Employment, Jobs, and Workers

    Get PDF
    We provide a unified discussion of the relations among flows of workers, changes in employment and changes in the number of jobs at the level of the firm. Using the only available set of data (a nationally representative sample of Dutch firms in 1988 and 1990) we discover that: 1) Nearly half of all hiring is by firms where employment is not growing; 2) Over half of all firing is by firms that are not contracting; 3) Most firing is by firms that are also hiring; 4) Flows of workers within firms are small compared to flows into and out of firms; and 5) Accounting for simultaneous creation and destruction of jobs within firms adds roughly 15 percent to estimates of economywide job creation and destruction. The results imply that macroeconomic fluctuations can have substantial effects beyond those indicated by net employment changes at the firm level, and that studies of dynamic factor demand must account for variations in gross flows of workers.

    Monitoring of Cape Vulture (Gyps coprotheres) breeding colonies in the Magaliesberg, South Africa: 2007-2009

    Get PDF
    Cape Vultures (Gyps coprotheres) at three colonies, Skeerpoort, Roberts’ Farm and Nooitgedacht, in the Magaliesberg range in South Africa were monitored during 2007- 2009 to determine their breeding success and population trends. All three colonies showed high levels of breeding success, but while Nooitgedacht and Roberts’ Farm supported increased numbers of breeding pairs over the monitoring period, Skeerpoort (the largest) showed a dramatic decline between 2008 and 2009, the cause of which is unknown.Keywords: Monitoring, breeding colonies, Magaliesberg, South Africa, Cape Vulture, Gyps coprothere

    Fishtail effect and vortex dynamics in LiFeAs single crystals

    Full text link
    We investigate the fishtail effect, critical current density (JcJ_c) and vortex dynamics in LiFeAs single crystals. The sample exhibits a second peak (SP) in the magnetization loop only with the field ∣∣|| c-axis. We calculate a reasonably high JcJ_c, however, values are lower than in 'Ba-122' and '1111'-type FeAs-compounds. Magnetic relaxation data imply a strong pinning which appears not to be due to conventional defects. Instead, its behavior is similar to that of the triplet superconductor Sr2_2RuO4_4. Our data suggest that the origin of the SP may be related to a vortex lattice phase transition. We have constructed the vortex phase diagram for LiFeAs on the field-temperature plane.Comment: 5 pages, 5 figure

    Transition from a phase-segregated state to single-phase incommensurate sodium ordering in Na_xCoO_2 with x \approx 0.53

    Get PDF
    Synchrotron X-ray diffraction investigations of two single crystals of Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53 0) at room-temperature. The incommensurate (qq0) superstructure exists between 220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a broad plateau at the latter value between 260 K and 360 K. On cooling, unusual reversible phase segregation into two volume fractions is observed. Below 220 K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50 superstructure, while a second volume fraction with x = 0.55 exhibits another commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell. We argue that the commensurate-to-incommensurate transition is an intrinsic feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.Comment: Corrected/improved versio

    Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2

    Full text link
    We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1} is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J_1-J_2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure

    Nature of the spin dynamics and 1/3 magnetization plateau in azurite

    Full text link
    We present a specific heat and inelastic neutron scattering study in magnetic fields up into the 1/3 magnetization plateau phase of the diamond chain compound azurite Cu3_3(CO3_3)2_2(OH)2_2. We establish that the magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a chain of S=1/2S = 1/2 monomers, which are separated by S=0S = 0 dimers on the diamond chain backbone. The effective spin couplings Jmono/kB=10.1(2)J_{mono}/k_B = 10.1(2) K and Jdimer/kB=1.8(1)J_{dimer}/k_B = 1.8(1) K are derived from the monomer and dimer dispersions. They are associated to microscopic couplings J1/kB=1(2)J_1/k_B = 1(2) K, J2/kB=55(5)J_2/k_B = 55(5) K and a ferromagnetic J3/kB=−20(5)J_3/k_B = -20(5) K, possibly as result of dz2d_{z^2} orbitals in the Cu-O bonds providing the superexchange pathways.Comment: 5 pages, 4 figure

    Specific heat of Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2 single crystals: unconventional s±_\pm multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings

    Full text link
    We report a low-temperature specific heat study of high-quality single crystals of the heavily hole doped superconductor Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2. This compound exhibits bulk superconductivity with a transition temperature Tc≈34T_c \approx 34\,K, which is evident from the magnetization, transport, and specific heat measurements. The zero field data manifests a significant electronic specific heat in the normal state with a Sommerfeld coefficient γ≈53\gamma \approx 53 mJ/mol K2^{2}. Using a multi-band Eliashberg analysis, we demonstrate that the dependence of the zero field specific heat in the superconducting state is well described by a three-band model with an unconventional s±_\pm pairing symmetry and gap magnitudes Δi\Delta_i of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling,which contributes significantly to the relatively high value of TcT_c. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-TcT_c iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.Comment: 8 Figures, Submitted to PR
    • …
    corecore