46 research outputs found

    Magnetic field induced effects on the electric polarization in RMnO3 R Dy,Gd

    Get PDF
    X-ray resonant magnetic scattering studies of rare earth magnetic ordering were performed on perovskite manganites RMnO3 (R = Dy, Gd) in an applied magnetic field. The data reveal that the field-induced three-fold polarization enhancement for H || a (H approx. 20 kOe) observed in DyMnO3 below 6.5 K is due to a re-emergence of the Mn-induced Dy spin order with propagation vector k(Dy) = k(Mn) = 0.385 b*, which accompanies the suppression of the independent Dy magnetic ordering, k(Dy) = 1/2 b*. For GdMnO3, the Mn-induced ordering of Gd spins is used to track the Mn-ordering propagation vector. The data confirm the incommensurate ordering reported previously, with k(Mn) varying from 0.245 to 0.16 b* on cooling from T_N(Mn) down to a transition temperature T'. New superstructure reflections which appear below T' suggest a propagation vector k(Mn) = 1/4 b* in zero magnetic field, which may coexist with the previously reported A-type ordering of Mn. The Gd spins order with the same propagation vector below 7 K. Within the ordered state of Gd at T = 1.8 K we find a phase boundary for an applied magnetic field H || b, H = 10 kOe, which coincides with the previously reported transition between the ground state paraelectric and the ferroelectric phase of GdMnO3. Our results suggest that the magnetic ordering of Gd in magnetic field may stabilize a cycloidal ordering of Mn that, in turn, produces ferroelectricity.Comment: 8 Figures, v2: improved figure layou

    Tuning strategy for Curie-temperature enhancement in the van der Waals magnet Mn<sub>1+x</sub>Sb<sub>2−x</sub>Te<sub>4</sub>

    Get PDF
    The van-der-Waals antiferromagnetic topological insulator MnBi2Te4 is one of the few materials that realize the sought-after quantum anomalous Hall (QAH) state and quantized surface charge transport. To assess the relevance of its isostructural analog MnSb2Te4 as a potential QAH candidate, the roles of Mn/Sb site mixing and cationic vacancies need to be clarified. Recent findings have shown that non-stoichiometry in Mn1±xSb2∓xTe4 is an efficient tuning knob to achieve a net spin-polarized state and to raise the magnetic ordering temperature well above that of MnBi2Te4. Here, we report the crystal structure, the bulk and the surface magnetism of two new Mn1+xSb2−xTe4 samples: Mn1.08Sb1.92Te4(x ≈ 0.1) with TC = 44 K, and Mn2.01Sb1.19Te4(x ≈ 1.0) with the record TC = 58 K. We quantify the site mixing comprehensively by combining various structural probes on powders and single crystals, and then employ bulk, local (electron spin resonance), and spectroscopic (x-ray magnetic circular dichroism) probes to connect these insights to the magnetism of these materials. We demonstrate that Mn over-stoichiometry up to x = 1.0, in combination with a particular Mn/Sb intermixing pattern and the increasingly three-dimensional character of the magnetic order, push the TC upwards. The tendency towards more robust ferromagnetism mediated by stronger interlayer exchange in Mn1+xSb2−xTe4 upon increasing x is confirmed by bulk magnetometry and by a series of density-functional-theory calculations of model structures with varying intermixing.</p

    Complex Field Induced States in Linarite PbCuSO4 OH 2 with a Variety of High Order Exotic Spin Density Wave States

    Get PDF
    Low temperature neutron diffraction and NMR studies of field induced phases in linarite are presented for magnetic fields H amp; 8741;b axis. A two step spin flop transition is observed, as well as a transition transforming a helical magnetic ground state into an unusual magnetic phase with sine wave modulated moments amp; 8741; H. An effective J 1 amp; 8722;J 2 single chain model with a magnetization dependent frustration ratio amp; 945;ef f amp; 8722;J 2 J 1 is proposed. The latter is governed by skew interchain couplings and shifted to the vicinity of the ferromagnetic critical point. It explains qualitatively the observation of a rich variety of exotic longitudinal collinear spin density wave, SDWp, states 9 amp; 8805; p amp; 8805;
    corecore