20 research outputs found
The versatility of Penicillium species to degrade organic pollutants and its use for wastewater treatment
The removal of xenobiotics from industrial wastewater is of great interest to avoid environmental contamination. Penicillium species have been shown to be able to adapt its metabolism to many different circumstances and these fungi can use different xenobiotics as a carbon source. In this review, the ability of Penicillium to degrade different xenobiotic compounds is discussed. This review describes not only the biodegradation processes but also addresses the toxicity of the degradation products as well as the potential application of these processes in wastewater treatment. Penicillium strains have proven to be versatile and capable of being used for the biodegradation of different organic pollutants (phenols, azo dyes, hydrocarbons, pharmaceutical compounds, etc.) and show high potential to be used for wastewater treatment. From this review, it is concluded that beyond the degradation and optimization processes; pilot scale studies and toxicity must be carried out.Fil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin
Tratamiento de efluentes textiles con penicillium chrysogenum : estudio paramétrico
El tratamiento biológico mediante hongos ha demostrado ser un proceso atractivo para
biodegradar efluentes textiles. En este trabajo se realizó un estudio paramétrico de la
degradación de Direct Black 22 (DB22) mediante P. chrysogenum como primer
acercamiento a una aplicación industrial. Se estudiaron 3 fuentes de carbono adicionales y
su concentración inicial óptima. La concentración óptima de fuente de carbono se determinó
utilizando glucosa; siendo 6 g/L la que demostró una mejor performance. Con este valor se
estudiaron fuentes de carbono alternativas: glucosa como control, almidón por ser un
subproducto de la industria de la papa local y efluente de esta misma industria por ser un
residuo. El uso de almidón de papa como co-sustrato mostró las mayores velocidades de
decoloración y degradación de DQO. De este estudio se concluye que el uso de almidón de
papa con una concentración inicial de 6 g/L es la opción más favorable.Biological treatment with fungi has proven to be an attractive process for biodegrading textile
effluents. In this work a parametric study of the degradation of Direct Black 22 (DB22) by
P. chrysogenum was made as a first approach to an industrial application. Three additional
carbon sources and their optimum initial concentration were studied. The optimum carbon
source concentration was determined using glucose; 6 g/L showed the best performance.
With this value alternative carbon sources were studied: glucose as control, starch because
it is a by-product of the local potato industry and effluent from the same industry because it
is a residue. The use of potato starch as co-substrate showed the highest rates of
decolorization and COD degradation. This study concludes that the use of potato starch with
an initial concentration of 6 g/L is the most favorable option.Fil: Lanfranconi, Inés.
Universidad Nacional de Mar del PlataFil: Wolski, Erika Alejandra.
Universidad Nacional de Mar del PlataFil: Froilán, González Jorge.
Universidad Nacional de Mar del PlataFil: Durruty, Ignacio.
Universidad Nacional de Mar del Plat
A novel α-1, 3-glucan elicits plant defense responses in potato and induces protection against Rhizoctonia solani AG-3 and Fusarium solani f. sp. eumartii
All glucan elicitors from fungal cell walls have been described as ß-glucans. In a previous work, we have isolated and characterized an a-1, 3-glucan from a non-pathogenic Rhizoctonia isolate which induced glucanase activity in potato sprouts. In this work we showed that, in addition to eliciting a wide array of defense reactions, the a-1, 3-glucan induces protection against Rhizoctonia canker and Dry rot in plants and tubers, respectively. The a-1, 3-glucan strongly induced ß-1, 3-glucanase and chitinase activities. Immunological analysis showed that the level of the pathogenesis-related proteins increased. Histological studies showed an increase in cell wall deposition of callose and lignin, and ultrastructural analysis showed changes in the cytoplasm and the accumulation of electron-dense bodies in vacuoles. Protection assays showed that pre-treatments of potato sprouts and potato tubers with the a-1, 3-glucan results in a 40% of protection against Rhizoctonia canker and 60% protection against Dry rot, respectively.Fil: Wolski, Erika Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Maldonado, Sara Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio de Anatomia y Embriología Vegetal; ArgentinaFil: Daleo, Gustavo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Andreu, Adriana Balbina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin
Scaling up and kinetic model validation of Direct Black 22 degradation by immobilized Penicillium chrysogenum
This research was undertaken to develop tools that facilitate the industrial application of an immobilized loofah-fungi system to degrade Direct Black 22 (DB22) azo dye. In laboratory-scale tests, the DB22, and loofah as support, were used. Assays without loofah were used as a free-cells control. The use of natural carriers to facilitate adhesion and growth of the fungi has shown favorable results. The degradation rate of immobilized cells increased twice as compared to free-cells control. At day 5 the decolorization was almost complete, while without loofah the total decolorization took more than 10 days. After 10 days, the extent of growth was nine times higher for the immobilized assays in comparison with the control flask. In subsequent experiments decolorization of DB22 was proven in a bench-scale reactor. A previously developed kinetic model was validated during the process. The model validation over free-cells assays gives an average normalized root mean squared error (ANRMSE) of 0.1659. Recalibration steps allowed prediction of the degradation with immobilized cells, resulting in an ANRMSE of 0.1891. A new calibration of the model during the scaling-up process yielded an ANRMSE of 0.1136 for DB22. The results presented encourage the use of this modeling tool in industrial scale facilities.Fil: Durruty, Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gonzalez, Jorge Froilan. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Current Trends on Role of Biological Treatment in Integrated Treatment Technologies of Textile Wastewater
Wastewater discharge is a matter of concern as it is the primary source of water pollution. Consequently, wastewater treatment plays a key role in reducing the negative impact that wastewater discharge produce into the environment. Particularly, the effluents produced by textile industry are composed of high concentration of hazardous compounds such as dyes, as well as having high levels of chemical and biological oxygen demand, suspended solids, variable pH, and high concentration of salt. Main efforts have been focused on the development of methods consuming less water or reusing it, and also on the development of dyes with a better fixation capacity. However, the problem of how to treat these harmful effluents is still pending. Different treatment technologies have been developed, such as coagulation-flocculation, adsorption, membrane filtration, reverse osmosis, advanced oxidation, and biological processes (activated sludge, anaerobic-aerobic treatment, and membrane bioreactor). Concerning to biological treatments, even though they are considered as the most environmentally friendly and economic methods, their industrial application is still uncertain. On the one hand, this is due to the costs of treatment plants installation and, on the other, to the fact that most of the studies are carried out with simulated or diluted effluents that do not represent what really happens in the industries. Integrated treatment technologies by combining the efficiency two or more methodologies used to be more efficient for the decontamination of textile wastewater, than treatments used separately. The elimination of hazardous compounds had been reported using combination of physical, chemical, and biological processes. On this way, as degradation products can sometimes be even more toxic than the parent compounds, effluent toxicity assessment is an essential feature in the development of these alternatives. This article provides a critical view on the state of art of biological treatment, the degree of advancement and the prospects for their application, also discussing the concept of integrated treatment and the importance of including toxicity assays to reach an integral approach to wastewater treatment.Fil: Ceretta, Maria Belen. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Nercessian, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin
A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum
The potential of Penicillium chrysogenum to decolorize azo dyes and a real industrial textile wastewater was studied. P. chrysogenum was able to decolorize and degrade three azo dyes (200 mg L(-1)), either independently or in a mixture of them, using glucose as a carbon source. A kinetic model for degradation was developed and it allowed predicting the degradation kinetics of the mixture of the three azo dyes. In addition, P. chrysogenum was able to decolorize real industrial wastewater. The kinetic model proposed was also able to predict the decolorization of the real wastewater. The calibration of the proposed model makes it a useful tool for future wastewater facilities' design and for practical applications.Fil: Durruty, Ignacio. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fasce, Diana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Gonzalez, Jorge Froilan. Universidad Nacional de Mar del Plata; ArgentinaFil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Aplicación de hongos para la degradación de soluciones acuosas de fenol.
The bioremediation potential of a soil Penicillium chrysogenum was studied in batch culture using synthetic phenol as a sole carbon and energy source. Degradation was performed at room temperature, in resting mycelium conditions, without an acclimation period. Studies were conducted in liquid mineral salt medium with initial phenol concentration of 6, 30, 60, 200, 350 and 400 mg.l-1. The time required for complete degradation increased with the phenol concentration. Inhibition was observed on the specific growth and degradation rate. The growth rate was inhibited at phenol concentrations higher than 30 mg.l-1, while the degradation rate was inhibited at 200 mg.l-1. The high specific degradation rates obtained under resting mycelium conditions are relevant for practical applications of this fungus in soil decontamination processes. Experimental results were fitted to the Haldane model. Estimated values for μmax, KS, and KI were: 1.30 ± 0.20 d-1, 9.43 ± 1.54 mg.l-1 and 64.91 ± 17.88 mg.l-1, respectively. The of the observed yield coefficient YX/S varied with the specific growth rate μ according to Pirt?s maintenance energy model. Dynamic mass balance equations for biomass and phenol during the exponential and stationary growth phases were solved and compared very satisfactorily to experimental outcomes.Fil: Durruty, Ignacio. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Haure, Patricia Monica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: González, Jorge F.. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin
Biodegradación de fenol en cultivos estáticos por Penicillium chrysogenum ERK 1: habilidades catalíticas y fitotoxicidad residual
A phenol-degrading fungus was isolated from crop soils. Molecular characterization (using internal transcribed spacer, translation elongation factor and beta-tubulin gene sequences) and biochemical characterization allowed to identify the fungal strain as Penicillium chrysogenum Thom ERK1. Phenol degradation was tested at 25 degrees C under resting mycelium conditions at 6, 30, 60, 200, 350 and 400 mg/l of phenol as the only source of carbon and energy. The time required for complete phenol degradation increased at different initial phenol concentrations. Maximum specific degradation rate (0.89978 mg of phenol/day/mg of dry weight) was obtained at 200 mg/l. Biomass yield decreased at initial phenol concentrations above 60 mg/l. Catechol was identified as an intermediate metabolite by HPLC analysis and catechol dioxygenase activity was detected in plate assays, suggesting that phenol metabolism could occur via ortho fission of catechol. Wheat seeds were used as phytotoxicity indicators of phenol degradation products. It was found that these products were not phytotoxic for wheat but highly phytotoxic for phenol. The high specific degradation rates obtained under resting mycelium conditions are considered relevant for practical applications of this fungus in soil decontamination processes.Un aislamiento fúngico capaz de degradar fenol como única fuente de carbono y energía fue aislado de suelos agrícolas. La caracterización molecular (basada en el empleo de secuencias de espaciadores de transcriptos internos, de factores de la elongación de la traducción y del gen de la beta-tubulina) y la caracterización bioquímica permitieron identificar a esta cepa como Penicillium chrysogenum Thom ERK1. Se estudió la degradación de fenol a 25 °C en cultivos estáticos con 6, 30, 60, 200, 350 y 400 mg/l de fenol inicial. El tiempo requerido para completar la degradación de fenol aumentó al elevarse las concentraciones iniciales de dicho compuesto. La máxima tasa de degradación específica (0,89978 mg de fenol/día/mg de peso seco) se obtuvo con 200 mg/l. El rendimiento en biomasa disminuyó con concentraciones iniciales de fenol mayores de 60 mg/l. Se identificó al catecol como intermediario metabólico por HPLC y se observó actividad de catecol dioxigenasa en placa, lo que sugiere que el metabolismo de degradación del fenol ocurre vía orto fisión del catecol. Se utilizaron semillas de trigo como indicadores de fitotoxicidad de los productos de degradación. Estos productos no fueron fitotóxicos para trigo, mientras que el fenol mostró una alta fitotoxicidad. La alta tasa de degradación específica obtenida en condiciones estáticas resulta de gran interés para la aplicación de este hongo en procesos de descontaminación de suelos.Fil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Barrera, Viviana Andrea. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Castellari, Claudia Carla. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Gonzalez, Jorge Froilan. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin
Biodegradación de fenol en cultivos estáticos por Penicillium chrysogenum ERK 1: habilidades catalíticas y fitotoxicidad residual
A phenol-degrading fungus was isolated from crop soils. Molecular characterization (using internal transcribed spacer, translation elongation factor and beta-tubulin gene sequences) and biochemical characterization allowed to identify the fungal strain as Penicillium chrysogenum Thom ERK1. Phenol degradation was tested at 25 degrees C under resting mycelium conditions at 6, 30, 60, 200, 350 and 400 mg/l of phenol as the only source of carbon and energy. The time required for complete phenol degradation increased at different initial phenol concentrations. Maximum specific degradation rate (0.89978 mg of phenol/day/mg of dry weight) was obtained at 200 mg/l. Biomass yield decreased at initial phenol concentrations above 60 mg/l. Catechol was identified as an intermediate metabolite by HPLC analysis and catechol dioxygenase activity was detected in plate assays, suggesting that phenol metabolism could occur via ortho fission of catechol. Wheat seeds were used as phytotoxicity indicators of phenol degradation products. It was found that these products were not phytotoxic for wheat but highly phytotoxic for phenol. The high specific degradation rates obtained under resting mycelium conditions are considered relevant for practical applications of this fungus in soil decontamination processes.Un aislamiento fúngico capaz de degradar fenol como única fuente de carbono y energía fue aislado de suelos agrícolas. La caracterización molecular (basada en el empleo de secuencias de espaciadores de transcriptos internos, de factores de la elongación de la traducción y del gen de la beta-tubulina) y la caracterización bioquímica permitieron identificar a esta cepa como Penicillium chrysogenum Thom ERK1. Se estudió la degradación de fenol a 25 °C en cultivos estáticos con 6, 30, 60, 200, 350 y 400 mg/l de fenol inicial. El tiempo requerido para completar la degradación de fenol aumentó al elevarse las concentraciones iniciales de dicho compuesto. La máxima tasa de degradación específica (0,89978 mg de fenol/día/mg de peso seco) se obtuvo con 200 mg/l. El rendimiento en biomasa disminuyó con concentraciones iniciales de fenol mayores de 60 mg/l. Se identificó al catecol como intermediario metabólico por HPLC y se observó actividad de catecol dioxigenasa en placa, lo que sugiere que el metabolismo de degradación del fenol ocurre vía orto fisión del catecol. Se utilizaron semillas de trigo como indicadores de fitotoxicidad de los productos de degradación. Estos productos no fueron fitotóxicos para trigo, mientras que el fenol mostró una alta fitotoxicidad. La alta tasa de degradación específica obtenida en condiciones estáticas resulta de gran interés para la aplicación de este hongo en procesos de descontaminación de suelos.Fil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Barrera, Viviana Andrea. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Castellari, Claudia Carla. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Gonzalez, Jorge Froilan. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin
Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment
The disposal of wastewater containing large amounts of dyes is a public health and environmental problem, due to its toxicity into the aquatic biota, the reduction in sunlight penetration, which consequently interference in photosynthetic activity. In the present study a new composite, based on the heterojunction of reduced graphene oxide (rGO) and chalcopyrite (CuFeS2), was developed to treat a real textile wastewater (RW). The efficiency of the composite assisted by microwave irradiation was evaluated to catalyze the decolorization and degradation of RW containing a high concentration of the azo Direct Black 22 (DB22). A small amount (0.5 w/w%) of rGO on CuFeS2 was enough to uplift the efficiency of decolorization to 74 % of DB22 and 97 % TOC in the RW, only in the first min of treatment, and 97 % and 99 %, respectively, at 6 min. The improvement in catalytic activity can be attributed to the dipolar polarization effect, hot spots and the generation of hydroxyl radicals. Additionally, a synergistic effect between the composite and microwave irradiation, assisted by hydrogen peroxide, reduced the RW phytotoxicity, improving the radicle length of Lactuca sativa three times (from 0.87 cm to 2.65 cm with the application of a single minute of treatment). The reduction in phytotoxicity led to an increase in the germination percentage from 36 % to 53 %. Finally, the use of MW irradiation coupled to a novel rGO-CuFeS2 composite, in presence of H2O2 under acid medium, provides a feasible and highly rapid method to treat RW, reducing its phytotoxicity. Capsule: A novel rGO-CuFeS2 catalyst was developed and applied together with microwave irradiation for an ultra-fast degradation treatment (6 min) in real textile wastewater.Fil: Vieira, Yasmin. Universidade Federal de Santa Maria; BrasilFil: Ceretta, Maria Belen. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Foletto, Edson Luiz. Universidade Federal de Santa Maria; BrasilFil: Wolski, Erika Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Ingeniería Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Silvestri, Siara. Universidade Federal de Santa Maria; Brasi