51 research outputs found

    Generation of maghemite nanocrystals from iron–sulfur centres

    Get PDF
    Iron oxide nano-crystals 0.1–1.1 μm in diameter were generated on sulfur-doped amorphous carbon surfaces by electron beam irradiation of the novel 13e− high-spin complex [Fe(4-methyl-1,2-benzenedithiolate)2][NHEt3] encapsulated in a triblock copolymer. Possible relevance to iron nano-mineralization from Fe–S ferredoxin proteins and iron dysregulation in neurological disorders is discussed. Graphical abstract: Generation of maghemite nanocrystals from iron–sulfur centres Iron is an essential element for mammals and, amongst many other functions, plays an important role in the human brain.1 Recent research has indicated a strong association between iron dysregulation and Alzheimer's disease (AD), although it is unknown how the chemical and magnetic state of iron is linked to AD pathogenesis.2–4 Reports from Collingwood et al., and Dobson et al., for example, have shown the presence of iron oxide as the mixed oxidation state mineral, magnetite (Fe3O4) in AD tissue, a possible source of redox-active iron, but it remains unclear how this kind of iron mineral forms in the tissue.5,6 These unsolved and important questions have led us to consider how atomic resolution microscopy might provide new insight into nanoscale iron mineralization. Recently we reported methodology for studies of the nano-mineralisation of osmium, gold, ruthenium and iridium from their respective 1,2-dicarba-closo-dodecarborane-1,2-dithiolate complexes encapsulated in polymer micelles upon electron beam irradiation.7–9 Here we report the synthesis and characterization of the novel 13e− iron(iii) complex [Fe(4-methyl-1,2-benzenedithiolate)2][NHEt3] (1), containing Fe–S bonds analogous to those in the ubiquitous iron–sulfur ferredoxin proteins. Importantly, recent research has indicated a strong relationship between neurodegenerative disorders and defective Fe–S clusters.10,11 We have characterized complex 1 using Mössbauer, Raman and far-infra red spectroscopy, and investigated the generation of iron nanocrystals from 1 encapsulated in a poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) polymer (Scheme 1) by electron beam irradiation, and used electron energy-loss spectra (EELS) to identify the oxidation state of iron and its coordination environment in the nanocrystals

    Kinetics and mechanism of sequential ring methyl C–H activation in cyclopentadienyl rhodium(iii) complexes

    Get PDF
    We have studied activation of the methyl C–H bonds in the cyclopentadienyl ligands of half-sandwich Rh(III) complexes [η5-CpXRh(N,N′)Cl]+ by observing the dependence of sequential H/D exchange on variations in CpX = Cp* (complexes 1 and 2), Me4PhCp (CpXPh, 3) or Me4PhPhCp (CpXPhPh, 4), and chelated ligand N,N′ (bpy, 1; phen, 2–4). H/D exchange was fastest in d4-MeOD (t1/2 = 10 min, 37 °C, complex 1), no H/D exchange was observed in DMSO/D2O, and d4-MeOD enhanced the rate in CD3CN. The proposed Rh(I)–fulvene intermediate was trapped by [4 + 2] Diels–Alder reactions with conjugated dienes and characterized. The Rh(I) oxidation state was confirmed by X-ray photoelectron spectroscopy (XPS). Influence of solvent on the mechanisms of activation and Diels–Alder adduct formation was modelled using DFT calculations with the CAM-B3LYP functional and CEP-31 g basis set, and influence on the reaction profile of the dimiine ligand and phenyl substituent using the larger qzvp basis set. The Rh(III)–OH intemediate is stabilised by H-bonding with methanol and a Cp* CH3 hydrogen. The Rh(I)(Me4fulvene) species, stabilised by interaction of methanol with a coordinated water, again by two H-bonds H2O–HOMe (1.49 Å) and fulvene CH2 (1.94 Å), arises from synchronous transfer of the methanol OH proton to a Rh(III)–OH ligand and Cp* methyl hydrogen to the methanol oxygen. Additionally, the observed trend in catalytic activity for complexes 1–4 was reproduced by DFT calculations. These complexes form a novel class of catalytic molecular motors with a tunable rate of operation that can be stalled in a given state. They provide a basis for elucidation of the effects of ligand design on the contributions of electronic, rotational and vibrational energies to each step in the reaction pathway at the atomic level, consideration of which will enhance the design principles for the next generation of molecular machines

    New activation mechanism for half-sandwich organometallic anticancer complexes

    Get PDF
    The Cpx C–H protons in certain organometallic RhIII half-sandwich anticancer complexes [(η5-Cpx)Rh(N,N′)Cl]+, where Cpx = Cp*, phenyl or biphenyl-Me4Cp, and N,N′ = bipyridine, dimethylbipyridine, or phenanthroline, can undergo rapid sequential deuteration of all 15 Cp* methyl protons in aqueous media at ambient temperature. DFT calculations suggest a mechanism involving abstraction of a Cp* proton by the Rh–hydroxido complex, followed by sequential H/D exchange, with the Cp* rings behaving like dynamic molecular ‘twisters’. The calculations reveal the crucial role of pπ orbitals of N,N′-chelated ligands in stabilizing deprotonated Cpx ligands, and also the accessibility of RhI–fulvene intermediates. They also provide insight into why biologically-inactive complexes such as [(Cp*)RhIII(en)Cl]+ and [(Cp*)IrIII(bpy)Cl]+ do not have activated Cp* rings. The thiol tripeptide glutathione (γ-L-Glu-L-Cys-Gly, GSH) and the activated dienophile N-methylmaleimide, (NMM) did not undergo addition reactions with the proposed RhI–fulvene, although they were able to control the extent of Cp* deuteration. We readily trapped and characterized RhI–fulvene intermediates by Diels–Alder [4+2] cyclo-addition reactions with the natural biological dienes isoprene and conjugated (9Z,11E)-linoleic acid in aqueous media, including cell culture medium, the first report of a Diels–Alder reaction of a metal-bound fulvene in aqueous solution. These findings will introduce new concepts into the design of organometallic Cp* anticancer complexes with novel mechanisms of action

    Vibrational properties of a mononuclear dysprosium containing singlemolecule magnet

    Get PDF
    Dysprosium(III)-containing single-molecule magnets (SMMs) show blocking of the molecular magnetization and hysteresis effects in one molecule. They belong to the class of the best performing SMMs at present. Here, we present first results of Dysprosium(III)-containing single-molecule magnets (SMMs) show blocking of the molecular magnetization and hysteresis effects in one molecule. They belong to the class of the best performing SMMs at present. Here, we present first results of 161^{161}Dy-Nuclear Resonance Vibrational Spectroscopy (NRVS) experiments on the dysprosium(III) complex [Dy(H2_2dapp)(NO3_3)2_2](NO3_3) with H2dapp being 2,6-bis((E)-1-(2-(pyridine-2-yl)-hydrazineylidene)ethyl)pyridine. For the 161^{161}Dy-NRVS experiments a compact novel He flow cryostat was used at the Advanced Photon Source, Argonne National Laboratories, which enables low temperature NRVS experiments in helium vapour circumventing the often-observed difference between sensor read and “real” sample temperature in mostly used LHe and/or closed cycle cryostats with the NRVS sample being in vacuum. To explore the vibrational modes of the molecule simulations based on first density functional theory (DFT) calculations are presented.Dy-Nuclear Resonance Vibrational Spectroscopy (NRVS) experiments on the dysprosium(III) complex [Dy(H2_2dapp)(NO3_3)2_2](NO3_3) with H2_2dapp being 2,6-bis((E)-1-(2-(pyridine-2-yl)-hydrazineylidene)ethyl)pyridine. For the 161^{161}Dy-NRVS experiments a compact novel He flow cryostat was used at the Advanced Photon Source, Argonne National Laboratories, which enables low temperature NRVS experiments in helium vapour circumventing the often-observed difference between sensor read and “real” sample temperature in mostly used LHe and/or closed cycle cryostats with the NRVS sample being in vacuum. To explore the vibrational modes of the molecule simulations based on first density functional theory (DFT) calculations are presented

    Abrupt Spin Crossover Behavior in a Linear N1,N2-Triazole Bridged Trinuclear Fe(II) Complex

    No full text
    The synthesis, structures and magnetic properties of a new trinuclear spin crossover complex [FeII3(pyrtrz)6(TsO)6]·10H2O·2CH3OH (C2) and its analogue binuclear [FeII2(pyrtrz)5(SCN)4]·7H2O (C1), are reported here. These two compounds are synthesized based on the pyrrolyl functionalized Schiff base 1,2,4-triazole ligand 4-((1H-pyrrol-2-yl)methylene-amino)-4H-1,2,4-triazole (pyrtrz), which represent rare discrete multi-nuclear species, with µ2-N1,N2-triazole bridges linking the FeII centers. DC magnetic susceptibility measurements revealed an abrupt single-step spin crossover (SCO) behavior for compound 2 on the central FeII site and single-crystal X-ray diffraction (173 K) showed that this compound crystallizes in the monoclinic space group (P21/c), and multiple intramolecular interactions were found responsible for the abrupt transition. Compound 1 is a binuclear complex with thiocyanate as terminal ligands. This compound stays in high spin state over the whole temperature range and displays weak antiferromagnetic exchange coupling
    corecore