29 research outputs found

    Interpolated kilonova spectra models: necessity for a phenomenological, blue component in the fitting of AT2017gfo spectra

    Full text link
    In this work, we present a simple interpolation methodology for spectroscopic time series, based on conventional interpolation techniques (random forests) implemented in widely-available libraries. We demonstrate that our existing library of simulations is sufficient for training, producing interpolated spectra that respond sensitively to varied ejecta parameter, post-merger time, and viewing angle inputs. We compare our interpolated spectra to the AT2017gfo spectral data, and find parameters similar to our previous inferences using broadband light curves. However, the spectral observations have significant systematic short-wavelength residuals relative to our models, which we cannot explain within our existing framework. Similar to previous studies, we argue that an additional blue component is required. We consider a radioactive heating source as a third component characterized by light, slow-moving, lanthanide-free ejecta with Mth=0.003 M⊙M_{\rm th} = 0.003~M_\odot, vth=0.05v_{\rm th} = 0.05c, and κth=1\kappa_{\rm th} = 1 cm2^2/g. When included as part of our radiative transfer simulations, our choice of third component reprocesses blue photons into lower energies, having the opposite effect and further accentuating the blue-underluminosity disparity in our simulations. As such, we are unable to overcome short-wavelength deficits at later times using an additional radioactive heating component, indicating the need for a more sophisticated modeling treatment.Comment: 11 pages, 7 figures, presenting at April APS session F13.0000

    Surrogate light curve models for kilonovae with comprehensive wind ejecta outflows and parameter estimation for AT2017gfo

    Full text link
    The electromagnetic emission resulting from neutron star mergers have been shown to encode properties of the ejected material in their light curves. The ejecta properties inferred from the kilonova emission has been in tension with those calculated based on the gravitational wave signal and numerical relativity models. Motivated by this tension, we construct a broad set of surrogate light curve models derived for kilonova ejecta. The four-parameter family of two-dimensional anisotropic simulations and its associated surrogate explore different assumptions about the wind outflow morphology and outflow composition, keeping the dynamical ejecta component consistent. We present the capabilities of these surrogate models in interpolating kilonova light curves across various ejecta parameters and perform parameter estimation for AT2017gfo both without any assumptions on the outflow and under the assumption that the outflow must be representative of solar r-process abundance patterns. Our parameter estimation for AT2017gfo shows these surrogate models help alleviate the ejecta property discrepancy while also illustrating the impact of systematic modeling uncertainties on these properties, urging further investigation.Comment: 15 pages, 6 figures, data available in Zenodo (https://zenodo.org/record/7335961) and GitHub (https://github.com/markoris/surrogate_kne

    The X-ray counterpart to the gravitational wave event GW 170817

    Get PDF
    A long-standing paradigm in astrophysics is that collisions- or mergers- of two neutron stars (NSs) form highly relativistic and collimated outflows (jets) powering gamma-ray bursts (GRBs) of short (< 2 s) duration. However, the observational support for this model is only indirect. A hitherto outstanding prediction is that gravitational wave (GW) events from such mergers should be associated with GRBs, and that a majority of these GRBs should be off-axis, that is, they should point away from the Earth. Here we report the discovery of the X-ray counterpart associated with the GW event GW170817. While the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow from freshly synthesized r-process material in the merger ejecta, known as kilonova, observations at X-ray and, later, radio frequencies exhibit the behavior of a short GRB viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short GRBs and GWs from NS mergers, and gives independent confirmation of the collimated nature of the GRB emission.Comment: 38 pages, 10 figures, Nature, in pres
    corecore