418 research outputs found

    High Absorptance Coatings for THz Applications

    Get PDF
    High absorptance materials find application throughout the electromagnetic spectrum as radiation terminations, calibration standards, and glint reduction coatings. Successful use of materials at millimeter through submillimeter wavelengths requires an accurate knowledge and control over their thermal, mechanical, and electromagnetic properties in order to achieve the desired response while minimizing mass and volume. In practice, the achieved blackness is intimately linked to the material properties and geometry. Here, we summarize the characteristics of a variety of tunable artificial dielectric mixtures appropriate for THz applications at room and cryogenic temperatures. Theoretical guidelines for their application will be provided in the context of the effective-medium mean-field-approximation. The performance of these coatings as elements of reflectance standards, radiometric flux calibrators, passive thermal radiators, and stray light suppression baffles for imaging systems will be reviewed

    Precision Continuum Receivers for Astrophysical Applications

    Get PDF
    Cryogenically cooled HEMT (High Electron Mobility Transistor) amplifiers find widespread use in radioastronomy receivers. In recent years, these devices have also been commonly employed in broadband receivers for precision measurements of the Cosmic Microwave Background (CMB) radiation. In this setting, the combination of ultra-low-noise and low-spectral-resolution observations reinforce the importance achieving suitable control over the device environment to achieve fundamentally limited receiver performance. The influence of the intrinsic amplifier stability at low frequencies on data quality (e.g., achievable noise and residual temporal correlations), observational and calibration strategies, as well as architectural mitigation approaches in this setting will be discussed. The implications of device level 1/f fluctuations reported in the literature on system performance will be reviewed

    WMAP - A Portrait of the Early Universe

    Get PDF
    A host of astrophysical observations suggest that early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the 'Big Bang' and the signature of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, and geometry of the early Universe can be derived. A brief history of the evolution of the microwave radiometer systems and map making approaches used in advancing these aspects our understanding of cosmological will be reviewed. In addition, an overview of the results from NASA's Wilkinson Microwave Anisotropy (WMAP) will be presented

    Angular and Polarization Response of Multimode Sensors with Resistive-Grid Absorbers

    Full text link
    High sensitivity receiver systems with near ideal polarization sensitivity are highly desirable for development of millimeter and sub-millimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this paper, we examine the angular- and polarization- dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of \eta/2, where \eta\ is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of \eta/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to <60degrees. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this paper offer key tools in the design consideration of the instruments using the multimoded polarimeters.Comment: 22 pages, 15 figure

    A Cryogenic Infrared Calibration Target

    Get PDF
    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R≤0.003R \le 0.003, from 800−4,800 cm−1800-4,800\,{\rm cm}^{-1} (12−2 μ(12-2\,\mum). Upon expanding the spectral range under consideration to 400−10,000 cm−1400-10,000\,{\rm cm}^{-1} (25−1 μ(25-1\,\mum) the observed performance gracefully degrades to R≤0.02R \le 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ∼4 \sim4\,K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials -- Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder -- are characterized and presented

    Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    Get PDF
    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield

    Compact planar microwave blocking filters

    Get PDF
    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter

    Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations

    Get PDF
    A fabrication process is reported for prototype emitters of THz radiation, which operate cryogenically, and should provide a fast, stable blackbody source suitable for characterization of THz devices. The fabrication has been demonstrated and, at the time of this reporting, testing was underway. The emitter is similar to a monolithic silicon bolometer in design, using both a low-noise thermometer and a heater element on a thermally isolated stage. An impedance-matched, high-emissivity coat ing is also integrated to tune the blackbody properties. This emitter is designed to emit a precise amount of power as a blackbody spectrum centered on terahertz frequencies. The emission is a function of the blackbody temperature. An integrated resistive heater and thermometer system can control the temperature of the blackbody with greater precision than previous incarnations of calibration sources that relied on blackbody emission. The emitter is fabricated using a silicon- on-insulator substrate wafer. The buried oxide is chosen to be less than 1 micron thick, and the silicon device thickness is 1-2 microns. Layers of phosphorus compensated with boron are implanted into and diffused throughout the full thickness of the silicon device layer to create the thermometer and heater components. Degenerately doped wiring is implanted to connect the devices to wire-bondable contact pads at the edge of the emitter chip. Then the device is micromachined to remove the thick-handle silicon behind the thermometer and heater components, and to thermally isolate it on a silicon membrane. An impedance- matched emissive coating (ion assisted evaporated Bi) is applied to the back of the membrane to enable high-efficiency emission of the blackbody spectrum
    • …
    corecore