684 research outputs found
A Cryogenic Infrared Calibration Target
A compact cryogenic calibration target is presented that has a peak diffuse
reflectance, , from m).
Upon expanding the spectral range under consideration to m) the observed performance gracefully degrades to at the band edges. In the implementation described, a
high-thermal-conductivity metallic substrate is textured with a pyramidal
tiling and subsequently coated with a thin lossy dielectric coating that
enables high absorption and thermal uniformity across the target. The resulting
target assembly is lightweight, has a low-geometric profile, and has survived
repeated thermal cycling from room temperature to K. Basic design
considerations, governing equations, and test data for realizing the structure
described are provided. The optical properties of selected absorptive materials
-- Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with
stainless steel powder -- are characterized and presented
The Anisotropy in the Cosmic Microwave Background At Degree Angular Scales
We detect anisotropy in the cosmic microwave background (CMB) at degree
angular scales and confirm a previous detection reported by Wollack et al.
(1993). The root-mean-squared amplitude of the fluctuations is K. This may be expressed as the square root of the angular power spectrum
in a band of multipoles between . We find K. The measured spectral
index of the fluctuations is consistent with zero, the value expected for the
CMB. The spectral index corresponding to Galactic free-free emission, the most
likely foreground contaminant, is rejected at approximately .
The analysis is based on three independent data sets. The first, taken in
1993, spans the 26 - 36 GHz frequency range with three frequency bands; the
second was taken with the same radiometer as the first but during an
independent observing campaign in 1994; and the third, also take in 1994, spans
the 36-46 GHz range in three bands. For each telescope position and radiometer
channel, the drifts in the instrument offset are K/day over a period
of one month. The dependence of the inferred anisotropy on the calibration and
data editing is addressed.Comment: 16 pages, 2 figures. Saskatoon 1993/1994 combined analysi
Impedance Matched Absorptive Thermal Blocking Filters
We have designed, fabricated and characterized absorptive thermal blocking
filters for cryogenic microwave applications. The transmission line filter's
input characteristic impedance is designed to match and its
response has been validated from 0-to-50\,GHz. The observed return loss in the
0-to-20\,GHz design band is greater than dB and shows graceful
degradation with frequency. Design considerations and equations are provided
that enable this approach to be scaled and modified for use in other
applications
Composite Reflective/Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon
Infrared (IR) blocking filters are crucial for controlling the radiative
loading on cryogenic systems and for optimizing the sensitivity of bolometric
detectors in the far-IR. We present a new IR filter approach based on a
combination of patterned frequency selective structures on silicon and a thin
(50 thick) absorptive composite based on powdered reststrahlen
absorbing materials. For a 300 K blackbody, this combination reflects
50\% of the incoming light and blocks \textgreater 99.8\% of the total
power with negligible thermal gradients and excellent low frequency
transmission. This allows for a reduction in the IR thermal loading to
negligible levels in a single cold filter. These composite filters are
fabricated on silicon substrates which provide excellent thermal transport
laterally through the filter and ensure that the entire area of the absorptive
filter stays near the bath temperature. A metamaterial antireflection coating
cut into these substrates reduces in-band reflections to below 1\%, and the
in-band absorption of the powder mix is below 1\% for signal bands below 750
GHz. This type of filter can be directly incorporated into silicon refractive
optical elements
Superconducting Films for Absorber-Coupled MKID Detectors for Sub-Millimeter and Far-Infrared Astronomy
We describe measurements of the properties, at dc, gigahertz, and terahertz frequencies, of thin (10 nm) aluminum films with 10 ohm/{rm square}$ normal state sheet resistance. Such films can be applied to construct microwave kinetic inductance detector arrays for submillimeter and far-infrared astronomical applications in which incident power excites quasiparticles directly in a superconducting resonator that is configured to present a matched-impedance to the high frequency radiation being detected. For films 10 nm thick, we report normal state sheet resistance, resistance-temperature curves for the superconducting transition, quality factor and kinetic inductance fraction for microwave resonators made from patterned films, and terahertz measurements of sheet impedance measured with a Fourier Transform Spectrometer. We compare properties with similar resonators made from niobium 600 nm thick
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation
We confront predictions of inflationary scenarios with the WMAP data, in
combination with complementary small-scale CMB measurements and large-scale
structure data. The WMAP detection of a large-angle anti-correlation in the
temperature--polarization cross-power spectrum is the signature of adiabatic
superhorizon fluctuations at the time of decoupling. The WMAP data are
described by pure adiabatic fluctuations: we place an upper limit on a
correlated CDM isocurvature component. Using WMAP constraints on the shape of
the scalar power spectrum and the amplitude of gravity waves, we explore the
parameter space of inflationary models that is consistent with the data. We
place limits on inflationary models; for example, a minimally-coupled lambda
phi^4 is disfavored at more than 3-sigma using WMAP data in combination with
smaller scale CMB and large scale structure survey data. The limits on the
primordial parameters using WMAP data alone are: n_s(k_0=0.002
Mpc^{-1})=1.20_{-0.11}^{+0.12}, dn/dlnk=-0.077^{+0.050}_{- 0.052}, A(k_0=0.002
Mpc}^{-1})=0.71^{+0.10}_{-0.11} (68% CL), and r(k_0=0.002 Mpc^{-1})<1.28 (95%
CL).Comment: Accepted by ApJ; 49 pages, 9 figures. V2: Gives constraints from WMAP
data alone. Corrected approximation which made the constraints in Table 1 to
shift slightly. Corrected the Inflation Flow following the revision to
Kinney, astro-ph/0206032. No conclusions have been changed. For a detailed
list of changes see http://www.astro.princeton.edu/~hiranya/README.ERRATA.tx
- …