226 research outputs found

    High pressure induces superoxide production in isolated arteries viaprotein kinase C-dependent activation of NAD(P)H oxidase

    Get PDF
    Background - Oxidative stress seems to be present in all forms of hypertension. Thus, we tested the hypothesis that high intraluminal pressure (P-i) itself, by activating vascular oxidases, elicits increased superoxide (O-2(.-)) production interfering with flow-induced dilation. Methods and Results - Isolated, cannulated rat femoral arterial branches were exposed in vitro ( for 30 minutes) to normal P-i (80 mm Hg) or high P-i (160 mm Hg). High P-i significantly increased vascular O-2(.-) production ( as measured by lucigenin chemiluminescence and ethidium bromide fluorescence) and impaired endothelium-dependent dilations to flow; these effects could be reversed by superoxide dismutase. Administration of the NAD(P)H oxidase inhibitor diphenyleneiodonium, apocynin, the protein kinase C (PKC) inhibitor chelerythrine or staurosporin or the removal of extracellular Ca2+ during high P-i treatment prevented the increases in O-2(.-) production, whereas administration of losartan or captopril had no effect. High P-i resulted in significant increases in intracellular Ca2+ ([Ca2+](i)) in the vascular wall ( fura 2 fluorescence) and phosphorylation of PKCalpha ( Western blotting). The PKC activator phorbol myristate acetate significantly increased vascular O-2(.-) production, which was inhibited by superoxide dismutase, diphenyleneiodonium, chelerythrine, or removal of extracellular Ca2+. Both high P-i and phorbol myristate acetate increased the phosphorylation of the NAD( P) H oxidase subunit p47(phox). Conclusion - High P-i itself elicits arterial O-2(.-) production, most likely by PKC-dependent activation of NAD( P) H oxidase, thus providing a potential explanation for the presence of oxidative stress and endothelial dysfunction in various forms of hypertension and the vasculoprotective effect of antihypertensive agents of different mechanisms of action

    Inhibition of Ferrochelatase Impairs Vascular eNOS/NO and sGC/cGMP Signaling

    Get PDF
    Ferrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guanylyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10-5-10-7M; a selective FECH antagonist) for 24 and 72 hours respectively. Tissue FECH activity, heme, nitrite/NO and superoxide levels were sequentially measured. Protein expression of FECH, eNOS and sGC was detected by western blot analysis. Vascular responses to various vasoactive agents were evaluated via isometric tension studies. Treatment of BCAs with NMPP initiated a time- and dose-dependent attenuation of FECH activity without changes in its protein expression, followed by significant reduction in the heme level. Moreover, ACh-induced relaxation and ACh-stimulated release of NO were significant reduced, associated with suppression of eNOS protein expression in NMPP-treated groups. Decreased relaxation to NO donor spermine-NONOate reached the statistical significance in BCAs incubated with NMPP for 72 hours, concomitantly with downregulation of sGCbeta1 expression that was independent of heat shock protein 90 (HSP90), nor did it significantly affect BCA relaxation caused by BAY 58-2667 that activates sGC in the heme-deficiency. Neither vascular responses to non-NO/sGC-mediators nor production of superoxide was affected by NMPP-treatment. In conclusion, deletion of vascular heme production via inhibiting FECH elicits downregulation of eNOS and sGC expression, leading to an impaired NO-mediated relaxation in an oxidative stress-independent manner

    Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats

    Get PDF
    Abstract Background Different mechanisms of diabetic-induced NO dysfunction have been proposed and central to most of them are significant changes in eNOS function as the rate-limiting step in NO bioavailability. eNOS exists in both monomeric and dimeric conformations, with the dimeric form catalyzing the synthesis of nitric oxide, while the monomeric form catalyzes the synthesis of superoxide (O2-). Diabetic-induced shifts to decrease the dimer:monomer ratio is thought to contribute to the degradation of nitric oxide (NO) bioavailability. Exercise has long been useful in the management of diabetes. Although exercise-induced increases expression of eNOS has been reported, it is unclear if exercise may alter the functional coupling of eNOS. Methods To investigate this question, Goto-Kakizaki rats (a model of type II diabetes) were randomly assigned to a 9-week running program (train) or sedentary (sed) groups. Results Exercise training significantly (p 4), but not in the presence of exogenous BH4. Exercise training also significantly decreased NADPH-dependent O2- activity. Conclusion Exercise-induced increased eNOS dimerization resulted in an increased coupling of the enzyme to facilitate production of NO at the expense of ROS generation. This shift that could serve to decrease diabetic-related oxidative stress, which should serve to lessen diabetic-related complications.</p

    Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.

    Get PDF
    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation drives part of the excessive superoxide production implicated in the pathogenesis of heart failure. Pacing-induced heart failure was performed in eight chronically instrumented dogs. Seven normal dogs served as control. End-stage failure occurred after 28 +/- 1 days of pacing, when left ventricular end-diastolic pressure reached 25 mm Hg. In left ventricular tissue homogenates, spontaneous superoxide generation measured by lucigenin (5 microM) chemiluminescence was markedly increased in heart failure (1338 +/- 419 vs. 419 +/- 102 AU/mg protein, P < 0.05), as were NADPH levels (15.4 +/- 1.5 vs. 7.5 +/- 1.5 micromol/gww, P < 0.05). Superoxide production was further stimulated by the addition of NADPH. The NADPH oxidase inhibitor gp91(ds-tat) (50 microM) and the NO synthase inhibitor L-NAME (1 mM) both significantly lowered superoxide generation in failing heart homogenates by 80% and 76%, respectively. G6PD was upregulated and its activity higher in heart failure compared to control (0.61 +/- 0.10 vs. 0.24 +/- 0.03 nmol/min/mg protein, P < 0.05), while superoxide production decreased to normal levels in the presence of the G6PD inhibitor 6-aminonicotinamide. We conclude that the activation of myocardial G6PD is a novel mechanism that enhances NADPH availability and fuels superoxide-generating enzymes in heart failure

    Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with 177Lu-Dotatate: an analysis of the NETTER-1 study

    Get PDF
    Purpose: To assess the impact of baseline liver tumour burden, alkaline phosphatase (ALP) elevation, and target lesion size on treatment outcomes with 177Lu-Dotatate. Methods: In the phase 3 NETTER-1 trial, patients with advanced, progressive midgut neuroendocrine tumours (NET) were randomised to 177Lu-Dotatate (every 8 weeks, four cycles) plus octreotide long-acting release (LAR) or to octreotide LAR 60 mg. Primary endpoint was progression-free survival (PFS). Analyses of PFS by baseline factors, including liver tumour burden, ALP elevation, and target lesion size, were performed using Kaplan-Meier estimates; hazard ratios (HRs) with corresponding 95% CIs were estimated using Cox regression. Results: Significantly prolonged median PFS occurred with 177Lu-Dotatate versus octreotide LAR 60 mg in patients with low ( 50%) liver tumour burden (HR 0.187, 0.216, 0.145), and normal or elevated ALP (HR 0.153, 0.177), and in the presence or absence of a large target lesion (diameter > 30 mm; HR, 0.213, 0.063). Within the 177Lu-Dotatate arm, no significant difference in PFS was observed amongst patients with low/moderate/high liver tumour burden (P = 0.7225) or with normal/elevated baseline ALP (P = 0.3532), but absence of a large target lesion was associated with improved PFS (P = 0.0222). Grade 3 and 4 liver function abnormalities were rare and did not appear to be associated with high baseline liver tumour burden. Conclusions: 177Lu-Dotatate demonstrated significant prolongation in PFS versus high-dose octreotide LAR in patients with advanced, progressive midgut NET, regardless of baseline liver tumour burden, elevated ALP, or the presence of a large target lesion. Clinicaltrials.gov: NCT01578239, EudraCT: 2011-005049-11

    Modern American populism: Analyzing the economics behind the Silent Majority, the Tea Party and Trumpism

    Get PDF
    This article researches populism, more specifically, Modern American Populism (MAP), constructed of white, rural, and economically oppressed reactionarianism, which was borne out of the political upheaval of the 1960’s Civil Rights movement. The research looks to explain the causes of populism and what leads voters to support populist movements and politicians. The research focuses on economic anxiety as the main cause but also examines an alternative theory of racial resentment. In an effort to answer the question, what causes populist movements and motivations, I apply a research approach that utilizes qualitative and quantitative methods. There is an examination of literature that defines populism, its causes and a detailed discussion of the case studies, including the 1972 election of Richard Nixon; the Tea Party election of 2010; and the 2016 election of Donald Trump. In addition, statistical data analysis was run using American National Election Studies (ANES) surveys associated with each specific case study. These case studies were chosen because they most represent forms of populist movements in modern American history. While ample qualitative evidence suggested support for the hypothesis that economic anxiety is a necessary condition for populist voting patterns that elected Nixon, the Tea Party and Trump, the statistical data only supported the hypothesis in two cases, 2010 and 2016, with 1972 coming back inconclusive. The data also suggested that both economic anxiety and racial resentment played a role in 2010 and 2016, while having no significant effect in 1972 in either case. This suggests that further research needs to be conducted into additional populist case studies, as well as an examination into the role economic anxiety and economic crises play on racial resentment and racially motivated voting behavior

    Agency, design and ‘slow democracy’

    Get PDF
    Can democracy be resilient in an increasingly ‘high-speed society’? Social acceleration, some critics argue, poses a serious threat to the idea and practice of democracy. Others invoke but do not develop the idea of ‘slow democracy’ as one important response to this threat. Despite its importance, the critique and response lack analytical depth. In this context, and in an effort to rebuild the debate on a stronger and more fruitful base, the article underscores the potential of political agency to shape democracy’s temporality and reframes ‘slow democracy’ as a challenge of democratic design
    • 

    corecore