2,560 research outputs found

    Mapping X-ray heliometer for Orbiting Solar Observatory-8

    Get PDF
    An instrument combining mechanical collimators and proportional counter detectors was designed to record solar X-rays with energies of 2-30 keV with good temperal, spectral, and spatial resolution. The overall operation of the instrument is described to the degree needed by personnel who interact with the experimenter during SC/experiment interfacing, experiment testing, observatory integration and testing, and pre/post launch data processing. The general layout of the instrument is given along with a summary of the instrument characteristics

    Energy Loss from a Moving Vortex in Superfluid Helium

    Full text link
    We present measurements on both energy loss and pinning for a vortex terminating on the curved surface of a cylindrical container. We vary surface roughness, cell diameter, fluid velocity, and temperature. Although energy loss and pinning both arise from interactions between the vortex and the surface, their dependences on the experimental parameters differ, suggesting that different mechanisms govern the two effects. We propose that the energy loss stems from reconnections with a mesh of microscopic vortices that covers the cell wall, while pinning is dominated by other influences such as the local fluid velocity.Comment: 8 pages, 6 figure

    Perspectives on Working Time over the Life Cycle

    Get PDF

    Temperature and Emission-Measure Profiles Along Long-Lived Solar Coronal Loops Observed with TRACE

    Get PDF
    We report an initial study of temperature and emission measure distributions along four steady loops observed with the Transition Region and Coronal Explorer (TRACE) at the limb of the Sun. The temperature diagnostic is the filter ratio of the extreme-ultraviolet 171-angstrom and 195-angstrom passbands. The emission measure diagnostic is the count rate in the 171-angstrom passband. We find essentially no temperature variation along the loops. We compare the observed loop structure with theoretical isothermal and nonisothermal static loop structure.Comment: 10 pages, 3 postscript figures (LaTeX, uses aaspp4.sty). Accepted by ApJ Letter

    The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment

    Get PDF
    The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided

    Newtonian and Galilean Reference Frames (of the Special Theory of Relativity) Defined and Compared by Elementary Mathematics

    Get PDF
    The stated reference systems are mathematically defined using three dimensional Cartesian coordinates and sets of functions, and then systematically developed and contrasted. The linearity of the Lorentz transformation equations for special relativity is shown to follow directly from the definition of a Galilean inertial reference system

    Slicing of Silicon into Sheet Material. Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    Get PDF
    The use of multiblade slurry sawing to produce silicon wafers from ingots was investigated. The commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possible are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated

    Uncertainty Analysis in Population-Based Disease Microsimulation Models

    Get PDF
    Objective. Uncertainty analysis (UA) is an important part of simulation model validation. However, literature is imprecise as to how UA should be performed in the context of population-based microsimulation (PMS) models. In this expository paper, we discuss a practical approach to UA for such models. Methods. By adapting common concepts from published UA guidelines, we developed a comprehensive, step-by-step approach to UA in PMS models, including sample size calculation to reduce the computational time. As an illustration, we performed UA for POHEM-OA, a microsimulation model of osteoarthritis (OA) in Canada. Results. The resulting sample size of the simulated population was 500,000 and the number of Monte Carlo (MC) runs was 785 for 12-hour computational time. The estimated 95% uncertainty intervals for the prevalence of OA in Canada in 2021 were 0.09 to 0.18 for men and 0.15 to 0.23 for women. The uncertainty surrounding the sex-specific prevalence of OA increased over time. Conclusion. The proposed approach to UA considers the challenges specific to PMS models, such as selection of parameters and calculation of MC runs and population size to reduce computational burden. Our example of UA shows that the proposed approach is feasible. Estimation of uncertainty intervals should become a standard practice in the reporting of results from PMS models
    corecore