14 research outputs found

    Three novel polymorphic microsatellite markers for the glaucoma locus GLC1B by datamining tetranucleotide repeats on chromosome 2p12-q12

    Get PDF
    In order to identify new markers around the glaucoma locus GLC1B as a tool to refine its critical region at 2p11.2-2q11.2, we searched the critical region sequence obtained from the UCSC database for tetranucleotide (GATA)n and (GTCT)n repeats of at least 10 units in length. Three out of four potential microsatellite loci were found to be polymorphic, heterozygosity ranging from 64.56% to 79.59%. The identified markers are useful not only for GLC1B locus but also for the study of other disease loci at 2p11.2-2q11.2, a region with scarcity of microsatellite markers

    Determining Possible Shared Genetic Architecture Between Myopia and Primary Open-Angle Glaucoma

    Get PDF
    PURPOSE: To determine genetic correlations between common myopia and primary open-angle glaucoma (POAG). // METHODS: We tested the association of myopia polygenic risk scores (PRSs) with POAG and POAG endophenotypes using two studies: the Australian & New Zealand Registry of Advanced Glaucoma (ANZRAG) study comprising 798 POAG cases with 1992 controls, and the Rotterdam Study (RS), a population-based study with 11,097 participants, in which intraocular pressure (IOP) and optic disc parameter measurements were catalogued. PRSs were derived from genome-wide association study meta-analyses conducted by the Consortium for Refractive Error and Myopia (CREAM) and 23andMe. In total, 12 PRSs were constructed and tested. Further, we explored the genetic correlation between myopia, POAG, and POAG endophenotypes by using the linkage disequilibrium score regression (LDSC) method. // RESULTS: We did not find significant evidence for an association between PRS of myopia with POAG (P = 0.81), IOP (P = 0.07), vertical cup-disc ratio (P = 0.42), or cup area (P = 0.25). We observed a nominal association with retinal nerve fiber layer (P = 7.7 × 10-3) and a significant association between PRS for myopia and disc area (P = 1.59 × 10-9). Using the LDSC method, we found a genetic correlation only between myopia and disc area (genetic correlation [RhoG] = -0.12, P = 1.8 × 10-3), supporting the findings of the PRS approach. // CONCLUSIONS: Using two complementary approaches we found no evidence to support a genetic overlap between myopia and POAG; our results suggest that the comorbidity of these diseases is not influenced by common variants. The association between myopia and optic disc size is well known and validates this methodology

    Associations with intraocular pressure across Europe: The European Eye Epidemiology (E-3) Consortium

    Get PDF
    Raised intraocular pressure (IOP) is the most important risk factor for developing glaucoma, the second commonest cause of blindness globally. Understanding associations with IOP and variations in IOP between countries may teach us about mechanisms underlying glaucoma. We examined cross-sectional associations with IOP in 43,500 European adults from 12 cohort studies belonging to the European Eye Epidemiology (E3) consortium. Each study conducted multivariable linear regression with IOP as the outcome variable and results were pooled using random effects meta-analysis. The association of standardized study IOP with latitude was tested using meta-regression. Higher IOP was observed in men (0.18 mmHg; 95 % CI 0.06, 0.31; P = 0.004) and with higher body mass index (0.21 mmHg per 5 kg/m2; 95 % CI 0.14, 0.28; P < 0.001), shorter height (−0.17 mmHg per 10 cm; 95 % CI –0.25, −0.08; P < 0.001), higher systolic blood pressure (0.17 mmHg per 10 mmHg; 95 % CI 0.12, 0.22; P < 0.001) and more myopic refraction (0.06 mmHg per Dioptre; 95 % CI 0.03, 0.09; P < 0.001). An inverted U-shaped trend was observed between age and IOP, with IOP increasing up to the age of 60 and decreasing in participants older than 70 years. We found no significant association between standardized IOP and study location latitude (P = 0.76). Novel findings of our study include the association of lower IOP in taller people and an inverted-U shaped association of IOP with age. We found no evidence of significant variation in IOP across Europe. Despite the limited range of latitude amongst included studies, this finding is in favour of collaborative pooling of data from studies examining environmental and genetic determinants of IOP in Europeans

    The Rotterdam Study

    No full text

    the Rotterdam Study

    No full text

    Determining possible shared genetic architecture between myopia and primary open-angle glaucoma

    Get PDF
    Purpose:To determine genetic correlations between common myopia and primary open-angle glaucoma (POAG). Methods:We tested the association of myopia polygenic risk scores (PRSs) with POAG and POAG endophenotypes using two studies: the Australian &amp; New Zealand Registry of Advanced Glaucoma (ANZRAG) study comprising 798 POAG cases with 1992 controls, and the Rotterdam Study (RS), a population-based study with 11,097 participants, in which intraocular pressure (IOP) and optic disc parameter measurements were catalogued. PRSs were derived from genome-wide association study meta-analyses conducted by the Consortium for Refractive Error and Myopia (CREAM) and 23andMe. In total, 12 PRSs were constructed and tested. Further, we explored the genetic correlation between myopia, POAG, and POAG endophenotypes by using the linkage disequilibrium score regression (LDSC) method. Results:We did not find significant evidence for an association between PRS of myopia with POAG (P = 0.81), IOP (P = 0.07), vertical cup-disc ratio (P = 0.42), or cup area (P = 0.25). We observed a nominal association with retinal nerve fiber layer (P = 7.7 × 10-3) and a significant association between PRS for myopia and disc area (P = 1.59 × 10-9). Using the LDSC method, we found a genetic correlation only between myopia and disc area (genetic correlation [RhoG] = -0.12, P = 1.8 × 10-3), supporting the findings of the PRS approach. Conclusions:Using two complementary approaches we found no evidence to support a genetic overlap between myopia and POAG; our results suggest that the comorbidity of these diseases is not influenced by common variants. The association between myopia and optic disc size is well known and validates this methodology

    Determining possible shared genetic architecture between myopia and primary open-angle glaucoma

    No full text
    Purpose:To determine genetic correlations between common myopia and primary open-angle glaucoma (POAG). Methods:We tested the association of myopia polygenic risk scores (PRSs) with POAG and POAG endophenotypes using two studies: the Australian and New Zealand Registry of Advanced Glaucoma (ANZRAG) study comprising 798 POAG cases with 1992 controls, and the Rotterdam Study (RS), a population-based study with 11,097 participants, in which intraocular pressure (IOP) and optic disc parameter measurements were catalogued. PRSs were derived from genome-wide association study meta-analyses conducted by the Consortium for Refractive Error and Myopia (CREAM) and 23andMe. In total, 12 PRSs were constructed and tested. Further, we explored the genetic correlation between myopia, POAG, and POAG endophenotypes by using the linkage disequilibrium score regression (LDSC) method. Results:We did not find significant evidence for an association between PRS of myopia with POAG (P = 0.81), IOP (P = 0.07), vertical cup-disc ratio (P = 0.42), or cup area (P = 0.25). We observed a nominal association with retinal nerve fiber layer (P = 7.7 × 10-3) and a significant association between PRS for myopia and disc area (P = 1.59 × 10-9). Using the LDSC method, we found a genetic correlation only between myopia and disc area (genetic correlation [RhoG] = -0.12, P = 1.8 × 10-3), supporting the findings of the PRS approach. Conclusions:Using two complementary approaches we found no evidence to support a genetic overlap between myopia and POAG; our results suggest that the comorbidity of these diseases is not influenced by common variants. The association between myopia and optic disc size is well known and validates this methodology
    corecore