38 research outputs found

    Nature of Phase Transitions in a Generalized Complex |psi|^4 Model

    Full text link
    We employ Monte Carlo simulations to study a generalized three-dimensional complex $psi|^4 theory of Ginzburg-Landau form and compare our numerical results with a recent quasi-analytical mean-field type approximation, which predicts first-order phase transitions in parts of the phase diagram. As we have shown earlier, this approximation does not apply to the standard formulation of the model. This motivated us to introduce a generalized Hamiltonian with an additional fugacity term controlling implicitly the vortex density. With this modification we find that the complex |psi|^4 theory can, in fact, be tuned to undergo strong first-order phase transitions. The standard model is confirmed to exhibit continuous transitions which can be characterized by XY model exponents, as expected by universality arguments. A few remarks on the two-dimensional case are also made.Comment: 11 pages, RevTex, 33 postscript figures, author information under http://www.physik.uni-leipzig.de/index.php?id=2

    Universal amplitudes in the FSS of three-dimensional spin models

    Full text link
    In a MC study using a cluster update algorithm we investigate the finite-size scaling (FSS) of the correlation lengths of several representatives of the class of three-dimensional classical O(n) symmetric spin models on a column geometry. For all considered models we find strong evidence for a linear relation between FSS amplitudes and scaling dimensions when applying antiperiodic instead of periodic boundary conditions across the torus. The considered type of scaling relation can be proven analytically for systems on two-dimensional strips with periodic bc using conformal field theoryComment: 4 pages, RevTex, uses amsfonts.sty, 3 Figure

    Critical Exponents of the Classical 3D Heisenberg Model: A Single-Cluster Monte Carlo Study

    Full text link
    We have simulated the three-dimensional Heisenberg model on simple cubic lattices, using the single-cluster Monte Carlo update algorithm. The expected pronounced reduction of critical slowing down at the phase transition is verified. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors. In one set of simulations we employ the usual finite-size scaling methods to compute the critical exponents ν,α,β,γ,η\nu,\alpha,\beta,\gamma, \eta from a few measurements in the vicinity of the critical point, making extensive use of histogram reweighting and optimization techniques. In another set of simulations we report measurements of improved estimators for the spatial correlation length and the susceptibility in the high-temperature phase, obtained on lattices with up to 1003100^3 spins. This enables us to compute independent estimates of ν\nu and γ\gamma from power-law fits of their critical divergencies.Comment: 33 pages, 12 figures (not included, available on request). Preprint FUB-HEP 19/92, HLRZ 77/92, September 199

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' ϕ3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Ising model on 3D random lattices: A Monte Carlo study

    Full text link
    We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128,000 approx. 503 sites which are linked together according to the Voronoi/Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical properties of the model in the close vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision estimates obtained in Monte Carlo studies of the Ising model and \phi^4 field theory on three-dimensional regular cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure

    Boron containing polymers as potential rocket propellants.

    No full text
    corecore