317 research outputs found

    Comparative Genomics of the Baltic Sea Toxic Cyanobacteria Nodularia spumigena UHCC 0039 and Its Response to Varying Salinity

    Get PDF
    Salinity is an important abiotic factor controlling the distribution and abundance of Nodularia spumigena, the dominating diazotrophic and toxic phototroph, in the brackish water cyanobacterial blooms of the Baltic Sea. To expand the available genomic information for brackish water cyanobacteria, we sequenced the isolate Nodularia spurn/germ UHCC 0039 using an Illumina-SMRT hybrid sequencing approach, revealing a chromosome of 5,294,286 base pairs (bp) and a single plasmid of 92,326 bp. Comparative genomics in Nostocales showed pronounced genetic similarity among Nodularia spumigena strains evidencing their short evolutionary history. The studied Baltic Sea strains share similar sets of CRISPR-Cas cassettes and a higher number of insertion sequence (IS) elements compared to Nodularia spumigena CENA596 isolated from a shrimp production pond in Brazil. Nodularia spumigena UHCC 0039 proliferated similarly at three tested salinities, whereas the lack of salt inhibited its growth and triggered transcriptome remodeling, including the up-regulation of five sigma factors and the down-regulation of two other sigma factors, one of which is specific for strain UHCC 0039. Down-regulated genes additionally included a large genetic region for the synthesis of two yet unidentified natural products. Our results indicate a remarkable plasticity of the Nodularia salinity acclimation, and thus salinity strongly impacts the intensity and distribution of cyanobacterial blooms in the Baltic Sea.Peer reviewe

    Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are regulatory RNA molecules that are specified by their mode of action, the structure of primary transcripts, and their typical size of 20–24 nucleotides. Frequently, not only single miRNAs but whole families of closely related miRNAs have been found in animals and plants. Some families are widely conserved among different plant taxa. Hence, it is evident that these conserved miRNAs are of ancient origin and indicate essential functions that have been preserved over long evolutionary time scales. In contrast, other miRNAs seem to be species-specific and consequently must possess very distinct functions. Thus, the analysis of an early-branching species provides a window into the early evolution of fundamental regulatory processes in plants. RESULTS: Based on a combined experimental-computational approach, we report on the identification of 48 novel miRNAs and their putative targets in the moss Physcomitrella patens. From these, 18 miRNAs and two targets were verified in independent experiments. As a result of our study, the number of known miRNAs in Physcomitrella has been raised to 78. Functional assignments to mRNAs targeted by these miRNAs revealed a bias towards genes that are involved in regulation, cell wall biosynthesis and defense. Eight miRNAs were detected with different expression in protonema and gametophore tissue. The miRNAs 1–50 and 2–51 are located on a shared precursor that are separated by only one nucleotide and become processed in a tissue-specific way. CONCLUSION: Our data provide evidence for a surprisingly diverse and complex miRNA population in Physcomitrella. Thus, the number and function of miRNAs must have significantly expanded during the evolution of early land plants. As we have described here within, the coupled maturation of two miRNAs from a shared precursor has not been previously identified in plants

    Light-harvesting antenna function of phycoerythrin in Prochlorococcus marinus

    Get PDF
    AbstractProchlorococcus marinus strain CCMP 1375 is the sole prokaryote to possess phycoerythrin in addition to (divinyl-)chlorophyll a/b binding antenna complexes. Here we demonstrate, employing a spectrofluorimetric assay, that phycoerythrin serves a light-harvesting antenna function (transfers energy to chlorophylls)

    A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-coding RNAs (ncRNA) are regulators of gene expression in all domains of life. They control growth and differentiation, virulence, motility and various stress responses. The identification of ncRNAs can be a tedious process due to the heterogeneous nature of this molecule class and the missing sequence similarity of orthologs, even among closely related species. The small ncRNA Yfr1 has previously been found in the <it>Prochlorococcus/Synechococcus </it>group of marine cyanobacteria.</p> <p>Results</p> <p>Here we show that screening available genome sequences based on an RNA motif and followed by experimental analysis works successfully in detecting this RNA in all lineages of cyanobacteria. Yfr1 is an abundant ncRNA between 54 and 69 nt in size that is ubiquitous for cyanobacteria except for two low light-adapted strains of <it>Prochlorococcus</it>, MIT 9211 and SS120, in which it must have been lost secondarily. Yfr1 consists of two predicted stem-loop elements separated by an unpaired sequence of 16–20 nucleotides containing the ultraconserved undecanucleotide 5'-ACUCCUCACAC-3'.</p> <p>Conclusion</p> <p>Starting with an ncRNA previously found in a narrow group of cyanobacteria only, we show here the highly specific and sensitive identification of its homologs within all lineages of cyanobacteria, whereas it was not detected within the genome sequences of <it>E. coli </it>and of 7 other eubacteria belonging to the alpha-proteobacteria, chlorobiaceae and spirochaete. The integration of RNA motif prediction into computational pipelines for the detection of ncRNAs in bacteria appears as a promising step to improve the quality of such predictions.</p

    CoVennTree: a new method for the comparative analysis of large datasets

    Get PDF
    The visualization of massive datasets, such as those resulting from comparative metatranscriptome analyses or the analysis of microbial population structures using ribosomal RNA sequences, is a challenging task. We developed a new method called CoVennTree (Comparative weighted Venn Tree) that simultaneously compares up to three multifarious datasets by aggregating and propagating information from the bottom to the top level and produces a graphical output in Cytoscape. With the introduction of weighted Venn structures, the contents and relationships of various datasets can be correlated and simultaneously aggregated without losing information. We demonstrate the suitability of this approach using a dataset of 16S rDNA sequences obtained from microbial populations at three different depths of the Gulf of Aqaba in the Red Sea. CoVennTree has been integrated into the Galaxy ToolShed and can be directly downloaded and integrated into the user instance

    Biocomputational prediction of non-coding RNAs in model cyanobacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In bacteria, non-coding RNAs (ncRNA) are crucial regulators of gene expression, controlling various stress responses, virulence, and motility. Previous work revealed a relatively high number of ncRNAs in some marine cyanobacteria. However, for efficient genetic and biochemical analysis it would be desirable to identify a set of ncRNA candidate genes in model cyanobacteria that are easy to manipulate and for which extended mutant, transcriptomic and proteomic data sets are available.</p> <p>Results</p> <p>Here we have used comparative genome analysis for the biocomputational prediction of ncRNA genes and other sequence/structure-conserved elements in intergenic regions of the three unicellular model cyanobacteria <it>Synechocystis </it>PCC6803, <it>Synechococcus elongatus </it>PCC6301 and <it>Thermosynechococcus elongatus </it>BP1 plus the toxic <it>Microcystis aeruginosa </it>NIES843. The unfiltered numbers of predicted elements in these strains is 383, 168, 168, and 809, respectively, combined into 443 sequence clusters, whereas the numbers of individual elements with high support are 94, 56, 64, and 406, respectively. Removing also transposon-associated repeats, finally 78, 53, 42 and 168 sequences, respectively, are left belonging to 109 different clusters in the data set. Experimental analysis of selected ncRNA candidates in <it>Synechocystis </it>PCC6803 validated new ncRNAs originating from the <it>fabF-hoxH </it>and <it>apcC-prmA </it>intergenic spacers and three highly expressed ncRNAs belonging to the Yfr2 family of ncRNAs. Yfr2a promoter-<it>luxAB </it>fusions confirmed a very strong activity of this promoter and indicated a stimulation of expression if the cultures were exposed to elevated light intensities.</p> <p>Conclusion</p> <p>Comparison to entries in Rfam and experimental testing of selected ncRNA candidates in <it>Synechocystis </it>PCC6803 indicate a high reliability of the current prediction, despite some contamination by the high number of repetitive sequences in some of these species. In particular, we identified in the four species altogether 8 new ncRNA homologs belonging to the Yfr2 family of ncRNAs. Modelling of RNA secondary structures indicated two conserved single-stranded sequence motifs that might be involved in RNA-protein interactions or in the recognition of target RNAs. Since our analysis has been restricted to find ncRNA candidates with a reasonable high degree of conservation among these four cyanobacteria, there might be many more, requiring direct experimental approaches for their identification.</p

    Evidence for a major role of antisense RNAs in cyanobacterial gene regulation

    Get PDF
    Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon-limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light-dependent manner and may be required for processing the L11 r-operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks

    Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus

    Get PDF
    AbstractEffects of nitrogen limitation on Photosystem II (PSII) activities and on phycoerythrin were studied in batch cultures of the marine oxyphotobacterium Prochlorococcus marinus. Dramatic decreases in photochemical quantum yields (FV/FM), the amplitude of thermoluminescence (TL) B-band, and the rate of QA reoxidation were observed within 12 h of growth in nitrogen-limited conditions. The decline in FV/FM paralleled changes in the TL B-band amplitude, indicative of losses in PSII activities and formation of non-functional PSII centers. These changes were accompanied by a continuous reduction in D1 protein content. In contrast, nitrogen deprivation did not cause any significant reduction in phycoerythrin content. Our results refute phycoerythrin as a nitrogen storage complex in Prochlorococcus. Regulation of phycoerythrin gene expression in Prochlorococcus is different from that in typical phycobilisome-containing cyanobacteria and eukaryotic algae investigated so far
    corecore