156 research outputs found

    Understanding Health and Disease with Multidimensional Single-Cell Methods

    Full text link
    Current efforts in the biomedical sciences and related interdisciplinary fields are focused on gaining a molecular understanding of health and disease, which is a problem of daunting complexity that spans many orders of magnitude in characteristic length scales, from small molecules that regulate cell function to cell ensembles that form tissues and organs working together as an organism. In order to uncover the molecular nature of the emergent properties of a cell, it is essential to measure multiple cell components simultaneously in the same cell. In turn, cell heterogeneity requires multiple cells to be measured in order to understand health and disease in the organism. This review summarizes current efforts towards a data-driven framework that leverages single-cell technologies to build robust signatures of healthy and diseased phenotypes. While some approaches focus on multicolor flow cytometry data and other methods are designed to analyze high-content image-based screens, we emphasize the so-called Supercell/SVM paradigm (recently developed by the authors of this review and collaborators) as a unified framework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond their specific contributions to basic and translational biomedical research, these efforts illustrate, from a larger perspective, the powerful synergy that might be achieved from bringing together methods and ideas from statistical physics, data mining, and mathematics to solve the most pressing problems currently facing the life sciences.Comment: 25 pages, 7 figures; revised version with minor changes. To appear in J. Phys.: Cond. Mat

    A Microstructural View of Burrowing with RoboClam

    Get PDF
    RoboClam is a burrowing technology inspired by Ensis directus, the Atlantic razor clam. Atlantic razor clams should only be strong enough to dig a few centimeters into the soil, yet they burrow to over 70 cm. The animal uses a clever trick to achieve this: by contracting its body, it agitates and locally fluidizes the soil, reducing the drag and energetic cost of burrowing. RoboClam technology, which is based on the digging mechanics of razor clams, may be valuable for subsea applications that could benefit from efficient burrowing, such as anchoring, mine detonation, and cable laying. We directly visualize the movement of soil grains during the contraction of RoboClam, using a novel index-matching technique along with particle tracking. We show that the size of the failure zone around contracting RoboClam, can be theoretically predicted from the substrate and pore fluid properties, provided that the timescale of contraction is sufficiently large. We also show that the nonaffine motions of the grains are a small fraction of the motion within the fluidized zone, affirming the relevance of a continuum model for this system, even though the grain size is comparable to the size of RoboClam

    Effect of rare events on out of equilibrium relaxation

    Full text link
    This letter reports experimental and numerical results on particle dynamics in an out-of-equilibrium granular medium. We observed two distinct types of grain motion: the well known cage motion, during which a grain is always surrounded by the same neighbors, and low probability "jumps", during which a grain moves significantly more relative to the others. These observations are similar to the results obtained for other out-of-equilibrium systems (glasses, colloidal systems, etc.). Although such jumps are extremely rare, by inhibiting them in numerical simulations we demonstrate that they play a significant role in the relaxation of out-of-equilibrium systemsComment: 4 pages, accepted for publication in Physical Review Letter

    The path to fracture in granular flows: dynamics of contact networks

    Full text link
    Capturing the dynamics of granular flows at intermediate length scales can often be difficult. We propose studying the dynamics of contact networks as a new tool to study fracture at intermediate scales. Using experimental three-dimensional flow fields with particle-scale resolution, we calculate the time evolving broken-links network and find that a giant component of this network is formed as shear is applied to this system. We implement a model of link breakages where the probability of a link breaking is proportional to the average rate of longitudinal strain (elongation) in the direction of the edge and find that the model demonstrates qualitative agreement with the data when studying the onset of the giant component. We note, however, that the broken-links network formed in the model is less clustered than our experimental observations, indicating that the model reflects less localized breakage events and does not fully capture the dynamics of the granular flow.Comment: 15 pages, 6 figures, accepted for publication in Phys. Rev.

    Quantifying stretching and rearrangement in epithelial sheet migration

    Get PDF
    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a Finite-Time Lyapunov Exponent (FTLE) analysis, we find that - in spite of large fluctuations - the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e., positive FTLE) is localized at the leading edge of migration. By decomposing the motion of the cells into affine and non-affine components using the metric Dmin2^{2}_{min}, we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.Comment: 21 pages, 7 figures This is an author-created, un-copyedited version of an article accepted for publication in the New Journal of Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1367-2630/15/2/02503
    • …
    corecore