44 research outputs found

    High‐Resolution Printed Ethylene Vinyl Acetate Based Strain Sensor for Impact Sensing

    Get PDF
    The strongly growing interest in digitalizing society requires simple and reliable strain-sensing concepts. In this work, a highly sensitive stretchable sensor is presented using a straightforward and scalable printing method. The piezoresistive sensor consists of conductive core–shell microspheres embedded in an elastomer. As the elastomer, ethylene vinyl acetate (EVA) is employed as an efficient and cost-effective alternative compared to polydimethylsiloxane (PDMS). EVA allows for a significantly lower percolation threshold and low hysteresis compared with PDMS. Using 35 µm microspheres, a detection limit of 0.01% is achieved. When using 4 µm microspheres, the sensor shows a detection limit of 0.015% and electromechanical robustness against 1000 cycles of 0–1% strain. The stretchable strain sensor is successfully implemented as an impact sensor and a diaphragm expansion monitoring sensor. Fast (20 ms) and high-resolution response as well as mechanical robustness to strain values greater than the linear working range of the sensor are demonstrated. The results of this research indicate the promising potential of employing conductive microspheres embedded in the EVA matrix for fast and precise strain detection applications

    Tailored Silicon/Carbon Compounds for Printed Li–Ion Anodes

    Get PDF
    Silicon (Si) has turned out to be a promising active material for next-generation lithium-ion battery anodes. Nevertheless, the issues known from Si as electrode material (pulverization effects, volume change etc.) are impeding the development of Si anodes to reach market maturity. In this study, we are investigating a possible application of Si anodes in low-power printed electronic applications. Tailored Si inks are produced and the impact of carbon coating on the printability and their electrochemical behavior as printed Si anodes is investigated. The printed Si anodes contain active material loadings that are practical for powering printed electronic devices, like electrolyte gated transistors, and are able to show high capacity retentions. A capacity of 1754 mAh/gSi_{Si} is achieved for a printed Si anode after 100 cycles. Additionally, the direct applicability of the printed Si anodes is shown by successfully powering an ink-jet printed transistor

    Piezoresistive Free‐standing Microfiber Strain Sensor for High‐resolution Battery Thickness Monitoring

    Get PDF
    Highly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented. The compliant fiber-shaped sensor is fabricated by an upscalable wet-spinning method employing a composite of microspherical core-shell conductive particles embedded in an elastomer. The electrical resistance of the sensor changes under applied strain, exhibiting a high strain sensitivity and extremely low strain detection limit of 0.00005 with high durability of 10 000 cycles. To demonstrate the accuracy and ease of applicability of this sensor, the real-time thickness change of a Li-ion battery pouch cell is monitored during the charge and discharge cycles. This work introduces a promising approach with the least material complexity for soft microfiber strain gauges

    The Higgs as a Portal to Plasmon-like Unparticle Excitations

    Get PDF
    12 LaTeX pages, 2 figures.-- Published in: JHEP04(2008)028.-- Final full-text version available at: http://dx.doi.org/10.1088/1126-6708/2008/04/028.A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry breaking, an infrared divergent vacuum expectation value for O_U. Such IR divergence should be tamed before any phenomenological implications of the Higgs-unparticle interplay can be drawn. In this paper we present a novel mechanism to cure that IR divergence through (scale-invariant) unparticle self-interactions, which has properties qualitatively different from the mechanism considered previously. Besides finding a mass gap in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon resonance. Such unparticle features could be explored experimentally through their mixing with the Higgs boson.Work supported in part by the European Commission under the European Union through the Marie Curie Research and Training Networks “Quest for Unification” (MRTN-CT- 2004-503369) and “UniverseNet” (MRTN-CT-2006-035863); by the Spanish Consolider- Ingenio 2010 Programme CPAN (CSD2007-0042); by a Comunidad de Madrid project (P-ESP-00346) and by CICYT, Spain, under contracts FPA 2007-60252 and FPA 2005-02211

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Interdependence of Gemcitabine Treatment, Transporter Expression, and Resistance in Human Pancreatic Carcinoma Cells1

    Get PDF
    Gemcitabine is widely used as first-line chemotherapeutic drug in the treatment of pancreatic cancer. Our previous experimental chemotherapy studies have shown that treatment of human pancreatic carcinoma cells with 5-fluorouracil (5-FU) alters the cellular transporter expression profile and that modulation of the expression of multidrug resistance protein 5 (MRP5; ABCC5) influences the chemoresistance of these tumor cells. Here, we studied the influence of acute and chronic gemcitabine treatment on the expression of relevant uptake and export transporters in pancreatic carcinoma cells by reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunoblot analyses. The specific role of MRP5 in cellular gemcitabine sensitivity was studied by cytotoxicity assays using MRP5-overexpressing and MRP5-silenced cells. Exposure to gemcitabine (12 nM for 3 days) did not alter the messenger RNA (mRNA) expression of MRP1, MRP3, MRP5, and equilibrative nucleoside transporter 1 (ENT1), whereas high dosages of the drug (20 µM for 1 hour) elicited up-regulation of these transporters in most cell lines studied. In cells with acquired gemcitabine resistance (up to 160 nM gemcitabine), the mRNA or protein expression of the gemcitabine transporters MRP5 and ENT1 was upregulated in several cell lines. Combined treatment with 5-FU and gemcitabine caused a 5- to 40-fold increase in MRP5 and ENT1 expressions. Cytotoxicity assays using either MRP5-overexpressing (HEK and PANC-1) or MRP5-silenced (PANC1/shMRP5) cells indicated that MRP5 contributes to gemcitabine resistance. Thus, our novel data not only on drug-induced alterations of transporter expression relevant for gemcitabine uptake and export but also on the link between gemcitabine sensitivity and MRP5 expression may lead to improved strategies of future chemotherapy regimens using gemcitabine in pancreatic carcinoma patients

    Membrane Drug Transporters and Chemoresistance in Human Pancreatic Carcinoma

    Get PDF
    Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil
    corecore