10,345 research outputs found

    The Anomalous Hall effect in re-entrant AuFe alloys and the real space Berry phase

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in the spin glass range. The data demonstrate that the degree of canting of the local spins strongly modifies the anomalous Hall effect, in agreement with theoretical predictions associating canting, chirality and a real space Berry phase. The canonical parametrization of the Hall signal for magnetic conductors becomes inappropriate when local spins are canted.Comment: 4 pages, 1 eps figur

    Stochastic delocalization of finite populations

    Full text link
    Heterogeneities in environmental conditions often induce corresponding heterogeneities in the distribution of species. In the extreme case of a localized patch of increased growth rates, reproducing populations can become strongly concentrated at the patch despite the entropic tendency for population to distribute evenly. Several deterministic mathematical models have been used to characterize the conditions under which localized states can form, and how they break down due to convective driving forces. Here, we study the delocalization of a finite population in the presence of number fluctuations. We find that any finite population delocalizes on sufficiently long time scales. Depending on parameters, however, populations may remain localized for a very long time. The typical waiting time to delocalization increases exponentially with both population size and distance to the critical wind speed of the deterministic approximation. We augment these simulation results by a mathematical analysis that treats the reproduction and migration of individuals as branching random walks subject to global constraints. For a particular constraint, different from a fixed population size constraint, this model yields a solvable first moment equation. We find that this solvable model approximates very well the fixed population size model for large populations, but starts to deviate as population sizes are small. The analytical approach allows us to map out a phase diagram of the order parameter as a function of the two driving parameters, inverse population size and wind speed. Our results may be used to extend the analysis of delocalization transitions to different settings, such as the viral quasi-species scenario

    The 2-dimensional non-linear sigma-model on a random latice

    Full text link
    The O(n) non-linear σ\sigma-model is simulated on 2-dimensional regular and random lattices. We use two different levels of randomness in the construction of the random lattices and give a detailed explanation of the geometry of such lattices. In the simulations, we calculate the mass gap for n=3,4n=3, 4 and 8, analysing the asymptotic scaling of the data and computing the ratio of Lambda parameters Λrandom/Λregular\Lambda_{\rm random}/\Lambda_{\rm regular}. These ratios are in agreement with previous semi-analytical calculations. We also numerically calculate the topological susceptibility by using the cooling method.Comment: REVTeX file, 23 pages. 13 postscript figures in a separate compressed tar fil

    Population structure, biomass and production of the West African lucinid Keletistes rhizoecus (Bivalvia, Mollusca) in Sivibilagbara swamp at Bodo Creek, Niger Delta, Nigeria

    Get PDF
    The West African lucinid bivalve Keletistes rhizoecus (Oliver, Basteria 50:47-64, 1986) is only known from the Niger Delta in Nigeria. Due to inaccessibility of its habitat population biology, growth parameters, biomass, and annual secondary production are unknown. The danger of oil pollution threatens the localities where this species occurs. Hence, ecological characteristics of the species were investigated quantitatively from May 2007 to April 2008 at Sivibilagbara, a protected mangrove swamp at Bodo Creek in the lower Niger Delta. Density of this chemosymbiotic lucinid was significantly higher than data previously reported. Temporal size distribution of the population showed minor changes due chiefly to recruitment and growth increments. Recruits peaked in February and September. The species lifespan is estimated to be 1.2 years. The biomass and production values are relatively high, but comparable to those of other bivalve species, especially those from nearby Andoni intertidal flats

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Finite-size scaling of the helicity modulus of the two-dimensional O(3) model

    Full text link
    Using Monte Carlo methods, we compute the finite-size scaling function of the helicity modulus Υ\Upsilon of the two-dimensional O(3) model and compare it to the low temperature expansion prediction. From this, we estimate the range of validity for the leading terms of the low temperature expansion of the finite-size scaling function and for the low temperature expansion of the correlation length. Our results strongly suggest that a Kosterlitz-Thouless transition at a temperature T>0T > 0 is extremely unlikely in this model.Comment: 4 pages, 3 Postscript figures, to appear in Phys. Rev. B Jan. 1997 as a Brief Repor

    The adsorption and desorption of ethanol ices from a model grain surface

    Get PDF
    Reflection absorption infrared spectroscopy (RAIRS) and temperature programed desorption (TPD) have been used to probe the adsorption and desorption of ethanol on highly ordered pyrolytic graphite (HOPG) at 98 K. RAIR spectra for ethanol show that it forms physisorbed multilayers on the surface at 98 K. Annealing multilayer ethanol ices (exposures > 50 L) beyond 120 K gives rise to a change in morphology before crystallization within the ice occurs. TPD shows that ethanol adsorbs and desorbs molecularly on the HOPG surface and shows four different species in desorption. At low coverage, desorption of monolayer ethanol is observed and is described by first-order kinetics. With increasing coverage, a second TPD peak is observed at a lower temperature, which is assigned to an ethanol bilayer. When the coverage is further increased, a second multilayer, less strongly bound to the underlying ethanol ice film, is observed. This peak dominates the TPD spectra with increasing coverage and is characterized by fractional-order kinetics and a desorption energy of 56.3 +/- 1.7 kJ mol(-1). At exposures exceeding 50 L, formation of crystalline ethanol is also observed as a high temperature shoulder on the TPD spectrum at 160 K. (c) 2008 American Institute of Physics

    Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors

    Full text link
    The magnetic behavior of insulating doped diluted magnetic semiconductors (DMS) is characterized by the interaction of large collective spins known as bound magnetic polarons. Experimental measurements of the susceptibility of these materials have suggested that the polaron-polaron interaction is ferromagnetic, in contrast to the antiferromagnetic carrier-carrier interactions that are characteristic of nonmagnetic semiconductors. To explain this behavior, a model has been developed in which polarons interact via both the standard direct carrier-carrier exchange interaction (due to virtual carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due to the interactions of polarons with magnetic ions in an interstitial region). Using a variational procedure, the optimal values of the model parameters were determined as a function of temperature. At temperatures of interest, the parameters describing polaron-polaron interactions were found to be nearly temperature-independent. For reasonable values of these constant parameters, we find that indirect ferromagnetic interactions can dominate the direct antiferromagnetic interactions and cause the polarons to align. This result supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure

    The chiral Anomalous Hall effect in re-entrant AuFe alloys

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in part of the spin glass range. An anomalous Hall contribution linked to the tilting of the local spins can be identified, confirming theoretical predictions of a novel topological Hall term induced when chirality is present. This effect can be understood in terms of Aharonov-Bohm-like intrinsic current loops arising from successive scatterings by canted local spins. The experimental measurements indicate that the chiral signal persists, meaning scattering within the nanoscopic loops remains coherent, up to temperatures of the order of 150 K.Comment: 7 pages, 11 eps figures Published version. Minor change

    Probing the Crust of the Neutron Star in EXO 0748-676

    Get PDF
    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ~5 yr post-outburst. We find that the neutron star temperature remained at ~117 eV between 2009 and 2011, but had decreased to ~110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature of ~95 eV that was measured ~4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.Comment: 9 pages, 4 tables, 3 figures. Minor revisions according to referee report. Accepted to Ap
    corecore