7,767 research outputs found

    Control considerations for high frequency, resonant, power processing equipment used in large systems

    Get PDF
    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads

    Quantum States of Neutrons in Magnetic Thin Films

    Full text link
    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin up and spin down polarized neutrons move towards each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.Comment: 6 pages, 5 figure

    Monomer dynamics of a wormlike chain

    Full text link
    We derive the stochastic equations of motion for a tracer that is tightly attached to a semiflexible polymer and confined or agitated by an externally controlled potential. The generalised Langevin equation, the power spectrum, and the mean-square displacement for the tracer dynamics are explicitly constructed from the microscopic equations of motion for a weakly bending wormlike chain by a systematic coarse-graining procedure. Our accurate analytical expressions should provide a convenient starting point for further theoretical developments and for the analysis of various single-molecule experiments and of protein shape fluctuations.Comment: 6 pages, 4 figure

    Indications of repair of radon-induced chromosome damage in human lymphocytes: an adaptive response induced by low doses of X-rays.

    Get PDF
    Naturally occurring radon is a relatively ubiquitous environmental carcinogen to which large numbers of people can be exposed over their lifetimes. The accumulation of radon in homes, therefore, has led to a large program to determine the effects of the densely ionizing alpha particles that are produced when radon decays. In human lymphocytes, low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of clastogens. This has been attributed to the induction of a repair mechanism by the low-dose exposures. Historically, chromosome aberrations induced by radon have been considered to be relatively irreparable. The present experiments, however, show that if human peripheral blood lymphocytes are irradiated with low doses of X-rays (2 cGy) at 48 hr of culture, before being exposed to radon at 72 hr of culture, the yield of chromatid deletions induced by radon is decreased by a factor of two. Furthermore, the numbers of aberrations per cell do not follow a Poisson distribution but are overdispersed, as might be expected because high-linear energy transfer (high LET) alpha particles have a high relative biological effectiveness compared to low-LET radiations such as X-rays or gamma rays. Pretreatment with a low dose of X-rays decreases the overdispersion and leads to a greater proportion of the cells having no aberrations, or lower numbers of aberrations, than is the case in cells exposed to radon alone.(ABSTRACT TRUNCATED AT 250 WORDS

    Continuum Limit of 2D2D Spin Models with Continuous Symmetry and Conformal Quantum Field Theory

    Get PDF
    According to the standard classification of Conformal Quantum Field Theory (CQFT) in two dimensions, the massless continuum limit of the O(2)O(2) model at the Kosterlitz-Thouless (KT) transition point should be given by the massless free scalar field; in particular the Noether current of the model should be proportional to (the dual of) the gradient of the massless free scalar field, reflecting a symmetry enhanced from O(2)O(2) to O(2)×O(2)O(2)\times O(2). More generally, the massless continuum limit of a spin model with a symmetry given by a Lie group GG should have an enhanced symmetry G×GG\times G. We point out that the arguments leading to this conclusion contain two serious gaps: i) the possibility of `nontrivial local cohomology' and ii) the possibility that the current is an ultralocal field. For the 2D2D O(2)O(2) model we give analytic arguments which rule out the first possibility and use numerical methods to dispose of the second one. We conclude that the standard CQFT predictions appear to be borne out in the O(2)O(2) model, but give an example where they would fail. We also point out that all our arguments apply equally well to any GG symmetric spin model, provided it has a critical point at a finite temperature.Comment: 19 page

    Cluster algorithms

    Get PDF
    Cluster algorithms for classical and quantum spin systems are discussed. In particular, the cluster algorithm is applied to classical O(N) lattice actions containing interactions of more than two spins. The performance of the multi-cluster and single--cluster methods, and of the standard and improved estimators are compared. (Lecture given at the summer school on `Advances in Computer Simulations', Budapest, July 1996.)Comment: 17 pages, Late

    Formation of phase lags at the cyclotron energies in the pulse profiles of magnetized, accreting neutron stars

    Get PDF
    Context: Accretion-powered X-ray pulsars show highly energy-dependent and complex pulse-profile morphologies. Significant deviations from the average pulse profile can appear, in particular close to the cyclotron line energies. These deviations can be described as energy-dependent phase lags, that is, as energy-dependent shifts of main features in the pulse profile. Aims: Using a numerical study we explore the effect of cyclotron resonant scattering on observable, energy-resolved pulse profiles. Methods: We generated the observable emission as a function of spin phase, using Monte Carlo simulations for cyclotron resonant scattering and a numerical ray-tracing routine accounting for general relativistic light-bending effects on the intrinsic emission from the accretion columns. Results: We find strong changes in the pulse profile coincident with the cyclotron line energies. Features in the pulse profile vary strongly with respect to the average pulse profile with the observing geometry and shift and smear out in energy additionally when assuming a non-static plasma. Conclusions: We demonstrate how phase lags at the cyclotron energies arise as a consequence of the effects of angular redistribution of X-rays by cyclotron resonance scattering in a strong magnetic field combined with relativistic effects. We also show that phase lags are strongly dependent on the accretion geometry. These intrinsic effects will in principle allow us to constrain a system's accretion geometry.Comment: 4 pages, 4 figures; updated reference lis
    corecore