665 research outputs found

    Mounding Instability and Incoherent Surface Kinetics

    Full text link
    Mounding instability in a conserved growth from vapor is analysed within the framework of adatom kinetics on the growing surface. The analysis shows that depending on the local structure on the surface, kinetics of adatoms may vary, leading to disjoint regions in the sense of a continuum description. This is manifested particularly under the conditions of instability. Mounds grow on these disjoint regions and their lateral growth is governed by the flux of adatoms hopping across the steps in the downward direction. Asymptotically ln(t) dependence is expected in 1+1- dimensions. Simulation results confirm the prediction. Growth in 2+1- dimensions is also discussed.Comment: 4 pages, 4 figure

    Growth model with restricted surface relaxation

    Full text link
    We simulate a growth model with restricted surface relaxation process in d=1 and d=2, where d is the dimensionality of a flat substrate. In this model, each particle can relax on the surface to a local minimum, as the Edwards-Wilkinson linear model, but only within a distance s. If the local minimum is out from this distance, the particle evaporates through a refuse mechanism similar to the Kim-Kosterlitz nonlinear model. In d=1, the growth exponent beta, measured from the temporal behavior of roughness, indicates that in the coarse-grained limit, the linear term of the Kardar-Parisi-Zhang equation dominates in short times (low-roughness) and, in asymptotic times, the nonlinear term prevails. The crossover between linear and nonlinear behaviors occurs in a characteristic time t_c which only depends on the magnitude of the parameter s, related to the nonlinear term. In d=2, we find indications of a similar crossover, that is, logarithmic temporal behavior of roughness in short times and power law behavior in asymptotic times

    Short-time scaling behavior of growing interfaces

    Full text link
    The short-time evolution of a growing interface is studied within the framework of the dynamic renormalization group approach for the Kadar-Parisi-Zhang (KPZ) equation and for an idealized continuum model of molecular beam epitaxy (MBE). The scaling behavior of response and correlation functions is reminiscent of the ``initial slip'' behavior found in purely dissipative critical relaxation (model A) and critical relaxation with conserved order parameter (model B), respectively. Unlike model A the initial slip exponent for the KPZ equation can be expressed by the dynamical exponent z. In 1+1 dimensions, for which z is known exactly, the analytical theory for the KPZ equation is confirmed by a Monte-Carlo simulation of a simple ballistic deposition model. In 2+1 dimensions z is estimated from the short-time evolution of the correlation function.Comment: 27 pages LaTeX with epsf style, 4 figures in eps format, submitted to Phys. Rev.

    Crossover effects in the Wolf-Villain model of epitaxial growth in 1+1 and 2+1 dimensions

    Full text link
    A simple model of epitaxial growth proposed by Wolf and Villain is investigated using extensive computer simulations. We find an unexpectedly complex crossover behavior of the original model in both 1+1 and 2+1 dimensions. A crossover from the effective growth exponent βeff ⁣ ⁣0.37\beta_{\rm eff}\!\approx\!0.37 to βeff ⁣ ⁣0.33\beta_{\rm eff}\!\approx\!0.33 is observed in 1+1 dimensions, whereas additional crossovers, which we believe are to the scaling behavior of an Edwards--Wilkinson type, are observed in both 1+1 and 2+1 dimensions. Anomalous scaling due to power--law growth of the average step height is found in 1+1 D, and also at short time and length scales in 2+1~D. The roughness exponents ζeffc\zeta_{\rm eff}^{\rm c} obtained from the height--height correlation functions in 1+1~D ( ⁣3/4\approx\!3/4) and 2+1~D ( ⁣2/3\approx\!2/3) cannot be simultaneously explained by any of the continuum equations proposed so far to describe epitaxial growth.Comment: 11 pages, REVTeX 3.0, IC-DDV-93-00
    corecore