35,796 research outputs found

    Lorentz Violation and Short-Baseline Neutrino Experiments

    Get PDF
    A general discussion is given of signals for broken Lorentz symmetry in short-baseline neutrino experiments. Among the effects that Lorentz violation can introduce are a dependence on energy differing from that of the usual massive-neutrino solution and a dependence on the direction of neutrino propagation. Using the results of the LSND experiment, explicit analysis of the effects of broken Lorentz symmetry yields a nonzero value (3+/-1) x 10^{-19} GeV for a combination of coefficients for Lorentz violation. This lies in the range expected for effects originating from the Planck scale in an underlying unified theory.Comment: 4 pages REVTe

    Ferrimagnetism of MnV_2O_4 spinel

    Full text link
    The spinel MnV_2O_4 is a two-sublattice ferrimagnet, with site A occupied by the Mn^{2+} ion and site B by the V^{3+} ion. The magnon of the system, the transversal fluctuation of the total magnetization, is a complicated mixture of the sublattice A and B transversal magnetic fluctuations. As a result, the magnons' fluctuations suppress in a different way the manganese and vanadium magnetic orders and one obtains two phases. At low temperature (0,T^*) the magnetic orders of the Mn and V ions contribute to the magnetization of the system, while at the high temperature (T^*,T_N), the vanadium magnetic order is suppressed by magnon fluctuations, and only the manganese ions have non-zero spontaneous magnetization. A modified spin-wave theory is developed to describe the two phases and to calculate the magnetization as a function of temperature. The anomalous M(T)M(T) curve reproduces the experimentally obtained ZFC magnetization.Comment: 4 pages, one figur

    Linearisable third order ordinary differential equations and generalised Sundman transformations

    Full text link
    We calculate in detail the conditions which allow the most general third order ordinary differential equation to be linearised in X'''(T)=0 under the transformation X(T)=F(x,t), dT=G(x,t)dt. Further generalisations are considered.Comment: 33 page

    Role of phi decays for K- yields in relativistic heavy-ion collisions

    Full text link
    The production of strange mesons in collisions of Ar+KCl at a kinetic beam energy of 1.756 AGeV is studied within a transport model of Boltzmann-\"Uhling-Uhlenbeck (BUU) type. In particular, ϕ,K+\phi, K^+ and KK^- yields and spectra are compared to the data mesured recently by the HADES collaboration and the ϕ\phi yield measured previously by the FOPI collaboration. Our results are in agreement with these data thus presenting an interpretation of the subleading role of ϕ\phi decays into KK^-'s and confirming the importance of the strangeness-exchange channels for KK^- production.Comment: 24 pages, 19 figure

    Relativistic theory for time and frequency transfer to order c^{-3}

    Get PDF
    This paper is motivated by the current development of several space missions (e.g. ACES on International Space Station) that will fly on Earth orbit laser cooled atomic clocks, providing a time-keeping accuracy of the order of 5~10^{-17} in fractional frequency. We show that to such accuracy, the theory of frequency transfer between Earth and Space must be extended from the currently known relativistic order 1/c^2 (which has been needed in previous space experiments such as GP-A) to the next relativistic correction of order 1/c^3. We find that the frequency transfer includes the first and second-order Doppler contributions, the Einstein gravitational red-shift and, at the order 1/c^3, a mixture of these effects. As for the time transfer, it contains the standard Shapiro time delay, and we present an expression also including the first and second-order Sagnac corrections. Higher-order relativistic corrections, at least O(1/c^4), are numerically negligible for time and frequency transfers in these experiments, being for instance of order 10^{-20} in fractional frequency. Particular attention is paid to the problem of the frequency transfer in the two-way experimental configuration. In this case we find a simple theoretical expression which extends the previous formula (Vessot et al. 1980) to the next order 1/c^3. In the Appendix we present the detailed proofs of all the formulas which will be needed in such experiments.Comment: 11 pages, 2 figures, to appear in Astronomy & Astrophysic

    The orbital elements and physical properties of the eclipsing binary BD+36 3317, a probable member of δ\delta Lyr cluster

    Full text link
    Context. The fact that eclipsing binaries belong to a stellar group is useful, because the former can be used to estimate distance and additional properties of the latter, and vice versa. Aims. Our goal is to analyse new spectroscopic observations of BD+363317+36^\circ3317 along with the photometric observations from the literature and, for the first time, to derive all basic physical properties of this binary. We aim to find out whether the binary is indeed a member of the δ\delta Lyr open cluster. Methods. The spectra were reduced using the IRAF program and the radial velocities were measured with the program SPEFO. The line spectra of both components were disentangled with the program KOREL and compared to a grid of synthetic spectra. The final combined radial-velocity and photometric solution was obtained with the program PHOEBE. Results. We obtained the following physical elements of BD+363317+36^\circ3317: M1=2.24±0.07MM_1 = 2.24\pm0.07 M_{\odot}, M2=1.52±0.03MM_2 = 1.52\pm0.03 M_{\odot}, R1=1.76±0.01RR_1 = 1.76\pm0.01 R_{\odot}, R2=1.46±0.01RR_2 = 1.46\pm0.01 R_{\odot}, logL1=1.52±0.08Llog L_1 = 1.52\pm0.08 L_{\odot}, logL2=0.81±0.07Llog L_2 = 0.81\pm0.07 L_{\odot}. We derived the effective temperatures Teff,1=10450±420T_{eff,1} = 10450 \pm 420 K, Teff,2=7623±328T_{eff,2} = 7623 \pm 328 K. Both components are located close to ZAMS in the Hertzsprung-Russell (HR) diagram and their masses and radii are consistent with the predictions of stellar evolutionary models. Our results imply the average distance to the system d = 330±29330\pm29 pc. We re-investigated the membership of BD+363317+36^\circ3317 in the δ\delta Lyr cluster and confirmed it. The distance to BD+363317+36^\circ3317, given above, therefore represents an accurate estimate of the true distance for δ\delta Lyr cluster. Conclusions. The reality of the δ\delta Lyr cluster and the cluster membership of BD+363317+36^\circ3317 have been reinforced.Comment: 10 pages, 7 figures. Accepted for publication in A&
    corecore