2,556 research outputs found

    Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    Get PDF
    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned

    Supersonic wind tunnel nozzles: A selected, annotated bibliography to aid in the development of quiet wind tunnel technology

    Get PDF
    This bibliography, with abstracts, consists of 298 citations arranged in chronological order. The citations were selected to be helpful to persons engaged in the design and development of quiet (low disturbance) nozzles for modern supersonic wind tunnels. Author, subject, and corporate source indexes are included to assist with the location of specific information

    Highlights of experience with a flexible walled test section in the NASA Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere

    Predictive wall adjustment strategy for two-dimensional flexible walled adaptive wind tunnel: A detailed description of the first one-step method

    Get PDF
    Following the realization that a simple iterative strategy for bringing the flexible walls of two-dimensional test sections to streamline contours was too slow for practical use, Judd proposed, developed, and placed into service what was the first Predictive Strategy. The Predictive Strategy reduced by 75 percent or more the number of iterations of wall shapes, and therefore the tunnel run-time overhead attributable to the streamlining process, required to reach satisfactory streamlines. The procedures of the Strategy are embodied in the FORTRAN subroutine WAS (standing for Wall Adjustment Strategy) which is written in general form. The essentials of the test section hardware, followed by the underlying aerodynamic theory which forms the basis of the Strategy, are briefly described. The subroutine is then presented as the Appendix, broken down into segments with descriptions of the numerical operations underway in each, with definitions of variables

    Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    Get PDF
    Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP)

    Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    Get PDF
    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution

    Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    Get PDF
    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress

    NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    Get PDF
    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques

    Conservation laws and symmetries of quasilinear radial wave equations in multi-dimensions

    Full text link
    Symmetries and conservation laws are studied for two classes of physically and analytically interesting radial wave equations with power nonlinearities in multi-dimensions. The results consist of two main classifications: all symmetries of point type and all conservation laws of a general energy-momentum type are explicitly determined, including those such as dilations, inversions, similarity energies and conformal energies that exist only for special powers or dimensions. In particular, all variational cases (when a Lagrangian formulation exists) and non-variational cases (when no Lagrangian exists) for these wave equations are considered. As main results, the classification yields generalized energies and radial momenta in certain non-variational cases, which are shown to arise from a new type of Morawetz dilation identity that produces conservation laws for each of the two wave equations in a different way than Noether's theorem.Comment: Typos corrected in published version, 38 pages. Lagrangian functionals now include missing integration over the time variabl

    Multiple light scattering in nematic liquid crystals

    Full text link
    We present a rigorous treatment of the diffusion approximation for multiple light scattering in anisotropic random media, and apply it to director fluctuations in a nematic liquid crystal. For a typical nematic material, 5CB, we give numerical values of the diffusion constants D∥D_{\|} and D⊥D_{\perp}. We also calculate the temporal autocorrelation function measured in Diffusing Wave Spectroscopy.Comment: 5 pages RevTeX, 1 postscript figure, to be published in Phys. Rev. E (Rapid Communication
    • …
    corecore