11 research outputs found

    Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats

    Get PDF
    Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.</p

    Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats

    Get PDF
    Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.</p

    Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats

    Get PDF
    Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.</p

    Whole-genome resource sequences of 57 indigenous Ethiopian goats.

    Get PDF
    Domestic goats are distributed worldwide, with approximately 35% of the one billion world goat population occurring in Africa. Ethiopia has 52.5 million goats, ~99.9% of which are considered indigenous landraces deriving from animals introduced to the Horn of Africa in the distant past by nomadic herders. They have continued to be managed by smallholder farmers and semi-mobile pastoralists throughout the region. We report here 57 goat genomes from 12 Ethiopian goat populations sampled from different agro-climates. The data were generated through sequencing DNA samples on the Illumina NovaSeq 6000 platform at a mean depth of 9.71x and 150 bp pair-end reads. In total, ~2 terabytes of raw data were generated, and 99.8% of the clean reads mapped successfully against the goat reference genome assembly at a coverage of 99.6%. About 24.76 million SNPs were generated. These SNPs can be used to study the population structure and genome dynamics of goats at the country, regional, and global levels to shed light on the species' evolutionary trajectory

    THE ROUTE MOST TRAVELED: THE AFAR SALT TRAIL, NORTH ETHIOPIA

    No full text

    Table_3_Complex (multispecies) livestock keeping: Highland agricultural strategy in the northern Horn of Africa during the Pre-Aksumite (1600 BCE–400 BCE) and Aksumite (400 BCE–CE 800) periods.XLSX

    No full text
    The earliest settlements and states in the Horn of Africa were founded in mid to high-elevation areas by farmers and herders who were pioneers in agriculture and herding. Even today, places between mid- and high-elevation remain densely populated. The ancient Pre-Aksumites and Aksumites (1600 cal BCE–800 cal CE) of the north Ethiopian and Eritrean highlands established one of the most powerful states in the Horn of Africa in these high elevation areas through control of long-distance trade and intensive and extensive agriculture. However, despite the fact that agriculture was a significant source of wealth and subsistence for these ancient polities, there has been little research into the agricultural strategies of Pre-Aksumite and Aksumite societies. Using archaeological and faunal data collected from the site of Mezber dating from 1600 cal BCE to 400 cal CE, as well as prevsiously published data, this article provides zooarchaeological evidence for the earliest farming practices in the Horn of Africa. The research demonstrates a resilient highland agricultural strategy based on multispecies animal and plant resources, similar to most tropical agricultural systems today. A second important strategy of Pre-Aksumite farmers was the incorporation of both indigenous and exogenous plants and animals into their subsistance strategies. The Mezber site also offers one of the most thoroughly collected data to support multispecies farming practice in the north Ethiopian and Eritrean highlands.</p

    Table_2_Complex (multispecies) livestock keeping: Highland agricultural strategy in the northern Horn of Africa during the Pre-Aksumite (1600 BCE–400 BCE) and Aksumite (400 BCE–CE 800) periods.XLSX

    No full text
    The earliest settlements and states in the Horn of Africa were founded in mid to high-elevation areas by farmers and herders who were pioneers in agriculture and herding. Even today, places between mid- and high-elevation remain densely populated. The ancient Pre-Aksumites and Aksumites (1600 cal BCE–800 cal CE) of the north Ethiopian and Eritrean highlands established one of the most powerful states in the Horn of Africa in these high elevation areas through control of long-distance trade and intensive and extensive agriculture. However, despite the fact that agriculture was a significant source of wealth and subsistence for these ancient polities, there has been little research into the agricultural strategies of Pre-Aksumite and Aksumite societies. Using archaeological and faunal data collected from the site of Mezber dating from 1600 cal BCE to 400 cal CE, as well as prevsiously published data, this article provides zooarchaeological evidence for the earliest farming practices in the Horn of Africa. The research demonstrates a resilient highland agricultural strategy based on multispecies animal and plant resources, similar to most tropical agricultural systems today. A second important strategy of Pre-Aksumite farmers was the incorporation of both indigenous and exogenous plants and animals into their subsistance strategies. The Mezber site also offers one of the most thoroughly collected data to support multispecies farming practice in the north Ethiopian and Eritrean highlands.</p

    Table_1_Complex (multispecies) livestock keeping: Highland agricultural strategy in the northern Horn of Africa during the Pre-Aksumite (1600 BCE–400 BCE) and Aksumite (400 BCE–CE 800) periods.XLSX

    No full text
    The earliest settlements and states in the Horn of Africa were founded in mid to high-elevation areas by farmers and herders who were pioneers in agriculture and herding. Even today, places between mid- and high-elevation remain densely populated. The ancient Pre-Aksumites and Aksumites (1600 cal BCE–800 cal CE) of the north Ethiopian and Eritrean highlands established one of the most powerful states in the Horn of Africa in these high elevation areas through control of long-distance trade and intensive and extensive agriculture. However, despite the fact that agriculture was a significant source of wealth and subsistence for these ancient polities, there has been little research into the agricultural strategies of Pre-Aksumite and Aksumite societies. Using archaeological and faunal data collected from the site of Mezber dating from 1600 cal BCE to 400 cal CE, as well as prevsiously published data, this article provides zooarchaeological evidence for the earliest farming practices in the Horn of Africa. The research demonstrates a resilient highland agricultural strategy based on multispecies animal and plant resources, similar to most tropical agricultural systems today. A second important strategy of Pre-Aksumite farmers was the incorporation of both indigenous and exogenous plants and animals into their subsistance strategies. The Mezber site also offers one of the most thoroughly collected data to support multispecies farming practice in the north Ethiopian and Eritrean highlands.</p

    Table_4_Complex (multispecies) livestock keeping: Highland agricultural strategy in the northern Horn of Africa during the Pre-Aksumite (1600 BCE–400 BCE) and Aksumite (400 BCE–CE 800) periods.DOCX

    No full text
    The earliest settlements and states in the Horn of Africa were founded in mid to high-elevation areas by farmers and herders who were pioneers in agriculture and herding. Even today, places between mid- and high-elevation remain densely populated. The ancient Pre-Aksumites and Aksumites (1600 cal BCE–800 cal CE) of the north Ethiopian and Eritrean highlands established one of the most powerful states in the Horn of Africa in these high elevation areas through control of long-distance trade and intensive and extensive agriculture. However, despite the fact that agriculture was a significant source of wealth and subsistence for these ancient polities, there has been little research into the agricultural strategies of Pre-Aksumite and Aksumite societies. Using archaeological and faunal data collected from the site of Mezber dating from 1600 cal BCE to 400 cal CE, as well as prevsiously published data, this article provides zooarchaeological evidence for the earliest farming practices in the Horn of Africa. The research demonstrates a resilient highland agricultural strategy based on multispecies animal and plant resources, similar to most tropical agricultural systems today. A second important strategy of Pre-Aksumite farmers was the incorporation of both indigenous and exogenous plants and animals into their subsistance strategies. The Mezber site also offers one of the most thoroughly collected data to support multispecies farming practice in the north Ethiopian and Eritrean highlands.</p
    corecore