362 research outputs found

    Online Demodulation and Trigger for Flux-ramp Modulated SQUID Signals

    Get PDF
    Due to the periodic characteristics of SQUIDs, a suitable linearization technique is required for SQUID-based readout. Flux-ramp modulation is a common linearization technique and is typically applied for the readout of a microwave SQUID multiplexer as well as since recently also for dc-SQUIDs. Flux-ramp modulation requires another stage in the signal processing chain to demodulate the SQUID output signal before further processing. For cryogenic microcalorimeters, the signal contains events that are given by a fast exponentially rising and slowly exponentially decaying pulses shape. The events shall be detected by a trigger engine and recorded by a storage logic. Since the data rate can be decreased significantly by demodulation and event detection, it is desirable to do both steps on the deployed fast FPGA logic during measurement before passing the data to a general-purpose processor. In this contribution, we show the implementation of efficient multi-channel flux-ramp demodulation computed at run-time on a SoC-FPGA. Furthermore, a concept and implementation for an online trigger and buffer mechanism with its theoretical trigger loss rates depending on buffer size is presented. Both FPGA modules can be operated with up to 500 MHz clock frequency and can efficiently process 32 channels. Correct functionality and data reduction capability of the modules are demonstrated in measurements utilizing magnetic microcalorimeter irradiated with an Iron-55 source for event generation and read out by a microwave SQUID multiplexer

    A theoretical study of the C- 4So_3/2 and 2Do_{3/2,5/2} bound states and C ground configuration: fine and hyperfine structures, isotope shifts and transition probabilities

    Full text link
    This work is an ab initio study of the 2p3 4So_3/2, and 2Do_{3/2,5/2} states of C- and 2p2 3P_{0,1,2}, 1D_2, and 1S_0 states of neutral carbon. We use the multi-configuration Hartree-Fock approach, focusing on the accuracy of the wave function itself. We obtain all C- detachment thresholds, including correlation effects to about 0.5%. Isotope shifts and hyperfine structures are calculated. The achieved accuracy of the latter is of the order of 0.1 MHz. Intra-configuration transition probabilities are also estimated.Comment: 15 pages, 2 figures, 12 table

    In search for multi-target ligands as potential agents for diabetes mellitus and its complications—a structure-activity relationship study on inhibitors of aldose reductase and protein tyrosine phosphatase 1b

    Get PDF
    Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates

    Training a Scoring Function for the Alignment of Small Molecules

    Get PDF
    A comprehensive data set of aligned ligands with highly similar binding pockets from the Protein Data Bank has been built. Based on this data set, a scoring function for recognizing good alignment poses for small molecules has been developed. This function is based on atoms and hydrogen-bond projected features. The concept is simply that atoms and features of a similar type (hydrogen-bond acceptors/donors and hydrophobic) tend to occupy the same space in a binding pocket and atoms of incompatible types often tend to avoid the same space. Comparison with some recently published results of small molecule alignments shows that the current scoring function can lead to performance better than those of several existing methods

    Development and validation of an improved algorithm for overlaying flexible molecules

    Get PDF
    A program for overlaying multiple flexible molecules has been developed. Candidate overlays are generated by a novel fingerprint algorithm, scored on three objective functions (union volume, hydrogen-bond match, and hydrophobic match), and ranked by constrained Pareto ranking. A diverse subset of the best ranked solutions is chosen using an overlay-dissimilarity metric. If necessary, the solutions can be optimised. A multi-objective genetic algorithm can be used to find additional overlays with a given mapping of chemical features but different ligand conformations. The fingerprint algorithm may also be used to produce constrained overlays, in which user-specified chemical groups are forced to be superimposed. The program has been tested on several sets of ligands, for each of which the true overlay is known from protein–ligand crystal structures. Both objective and subjective success criteria indicate that good results are obtained on the majority of these sets

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs)

    Get PDF
    Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT) 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3), which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs) with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole) are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC50) were in the low micromolar range (3–36 µM) and thereby in the range of IC50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy
    corecore