346 research outputs found

    An ecohydrology model of the Guadiana Estuary (South Portugal)

    Get PDF
    A 1-D ecohydrology model is proposed that integrates physical, chemical and biological processes in the Guadiana Estuary during low flow conditions and that predicts the ecosystem health as determined by the following variables: river discharge, nutrients, suspended particulate matter, phytoplankton, zooplankton, bivalves, zooplanktivorous fish and carnivorous/omnivorous fish. Low flow conditions prevail now that the Alqueva dam has been constructed. The ecological sub-model is based on the non-linear Lotka-Volterra equation. The model is successful in capturing the observations of along-river changes in these variables. It suggests that both bottom-up and top-down ecological processes control the Guadiana Estuary ecosystem health. A number of sensitivity tests show that the model is robust and can be used to predict e within likely error bounds provided by the sensitivity tests e the consequences on the estuary ecosystem health of human activities throughout the river catchment, such as the irrigation farming downstream of the Alqueva dam, reclamation of the salt marshes by urban developments, and flow regulation by the Alqueva dam. The model suggests that the estuarine ecosystem health requires transient river floods and is compromised by flow regulation by the Alqueva dam. Remedial measures are thus necessary

    МодСль Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ двигатСля. ВычислСния, ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ ΠΈ испытания

    Get PDF
    На Π΄Π°Π½ΠΈΠΉ час Ρ– Ρƒ ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌΡƒ Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ– Π΄Π²ΠΈΠ³ΡƒΠ½ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ΡŒ Π½Π°ΠΉΠ³ΠΎΠ»ΠΎΠ²Π½Ρ–ΡˆΠΈΠΌΠΈ засобами Π²ΠΈΠ²ΠΎΠ΄Ρƒ Π½Π° ΠΎΡ€Π±Ρ–Ρ‚Ρƒ космічних транспортних Π°ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π². Π’ Π΄Π°Π½ΠΈΠΉ час Π½Π°ΠΉΠ²Π°ΠΆΠ»ΠΈΠ²Ρ–ΡˆΠΎΡŽ вимогою ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΡƒΠ²Π°Π½Π½Ρ– Π΄Π²ΠΈΠ³ΡƒΠ½Π° Ρ€Π°ΠΊΠ΅Ρ‚ΠΈ Ρ” змСншСння Ρ—Ρ— вартості Ρ– максимальнС Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Π΅Π½Π΅Ρ€Π³ΠΎΠ²Ρ–Π΄Π΄Π°Ρ‡Ρ–. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΡƒΠ²Π°Π½Π½Ρ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΈΡ… Π΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π² - Π΄ΠΎΠ²Π³ΠΎΡ‚Ρ€ΠΈΠ²Π°Π»ΠΈΠΉ Ρ– трудомісткий процСс, ΠΌΠ΅Ρ‚ΠΎΡŽ якого Ρ” Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²ΠΎ дСшСвого Ρ– високоякісного Π΄Π²ΠΈΠ³ΡƒΠ½Π°, Ρ‰ΠΎ ΠΌΠ°Ρ” ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Π½Π°Π²ΠΊΠΎΠ»ΠΈΡˆΠ½Ρ” сСрСдовищС. Π‘Π»Ρ–Π΄ΡƒΡŽΡ‡ΠΈ Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΌ Π²ΠΈΠΌΠΎΠ³Π°ΠΌ, Π’Π°Ρ€ΡˆΠ°Π²ΡΡŒΠΊΠΈΠΉ Π’Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΉ УнівСрситСт ΡΠΏΡ–Π»ΡŒΠ½ΠΎ Π· Π’Π°Ρ€ΡˆΠ°Π²ΡΡŒΠΊΠΈΠΌ Π°Π²Ρ–Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΌ Інститутом Ρ€ΠΎΠ·ΠΏΠΎΡ‡Π°Π»ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡƒ Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π±Π΅Π·ΠΏΠ΅Ρ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΈΡ… Π΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π². Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΠΉ Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΈΠΉ Π΄Π²ΠΈΠ³ΡƒΠ½ Ρ€Π°ΠΊΠ΅Ρ‚ΠΈ Π±ΡƒΠ² Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΠΉ Ρ– Π²ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΉ для ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€ΠΊΠΈ Π½ΠΎΠ²ΠΎΡ— Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π°. Π”Π°Π½Π° стаття ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ дослідТСння Π±Π΅Π·ΠΏΠ΅Ρ‡Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π΄Π²ΠΈΠ³ΡƒΠ½Π° Π· ΠΎΠΊΠΈΡΠ»ΡŽΠ²Π°Ρ‡Π΅ΠΌ Al/AN/HTPB, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΈΠΉ дослідний стСнд ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€ΠΊΠΈ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡƒΠ½Π°. Основна ΠΌΠ΅Ρ‚Π° Ρ†Ρ–Ρ”Ρ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ – Ρ†Π΅ проСктування простого Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡƒΠ½Π° Π· Π½Π°ΡΡ‚ΡƒΠΏΠ½ΠΎΡŽ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŽ ΠΉΠΎΠ³ΠΎ подальшого Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ– ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Π½Ρ.Now and in the foreseeable future rocket engine will be the most basic propulsion of space vehicle. Nowadays the most important condition in design of rocket engine is the cost reduction and increasing thrust to weight ratio as much as possible. The design of rocket engines is exhaustive and difficult process. It must produce low cost and high performance engine with minimal influence on the environment. Following these requirements, Warsaw University of Technology jointly with Institute of Aviation in Warsaw, started their own program on ecologically safe propulsion development. The experimental hybrid rocket motor has been designed and manufactured to test a new formula of solid fuel. The paper explores the performance and safety implications associated with the oxidizer enhanced Al/AN/HTPB grain by using of a laboratory scale hybrid rocket motor test stand. The main objective of this work was to design simple rocket engine that could smoothly be developed and possibly improved in the future.На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈ Π² ΠΎΠ±ΠΎΠ·Ρ€ΠΈΠΌΠΎΠΌ Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ самыми основными Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ установками космичСских транспортных срСдств. Π’ настоящСС врСмя самым Π²Π°ΠΆΠ½Ρ‹ΠΌ условиСм ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ двигатСля Ρ€Π°ΠΊΠ΅Ρ‚Ρ‹ являСтся ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π΅Π΅ стоимости ΠΈ максимальноС ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ тяги ΠΊ вСсу. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ – ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΉ процСсс, Ρ†Π΅Π»ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ являСтся производство дСшСвого ΠΈ высококачСствСнного двигатСля с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ влияниСм Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду. БлСдуя ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌ трСбованиям, Π’Π°Ρ€ΡˆΠ°Π²ΡΠΊΠΈΠΉ ВСхнологичСский УнивСрситСт совмСстно с Π’Π°Ρ€ΡˆΠ°Π²ΡΠΊΠΈΠΌ Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ институтом Π½Π°Ρ‡Π°Π»ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡƒ экологичСски бСзопасного развития Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… установок. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΉ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Ρ€Π°ΠΊΠ΅Ρ‚Ρ‹ Π±Ρ‹Π» Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ Π½ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. Данная ΡΡ‚Π°Ρ‚ΡŒΡ содСрТит исслСдования бСзопасной Ρ€Π°Π±ΠΎΡ‚Ρ‹ двигатСля с окислитСлСм Al/AN/HTPB, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΠΈ этом Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹ΠΉ ΠΈΡΠΏΡ‹Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ стСнд ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΊ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ двигатСля. Основная Ρ†Π΅Π»ΡŒ этой Ρ€Π°Π±ΠΎΡ‚Ρ‹ состоит Π² ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ простого Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ двигатСля с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ дальнСйшСго развития ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ

    Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areas

    Get PDF
    The Sense Acuity and Behavioral (SAAB) Hypothesis proposes that the swimming capabilities and sensorial acuity of temperate fish larvae allows them to find and swim towards coastal nursery areas, which are crucial for their recruitment. To gather further evidence to support this theory, it is necessary to understand how horizontal swimming capability varies along fish larvae ontogeny. Therefore, we studied the swimming capability of white seabream Diplodus sargus (Linnaeus, 1758) larvae along ontogeny, and their relationship with physiological condition. Thus, critical swimming speed (U-crit) and the distance swam (km) during endurance tests were determined for fish larvae from 15 to 55 days post-hatching (DPH), and their physiological condition (RNA, DNA and protein contents) was assessed. The critical swimming speed of white seabream larvae increased along ontogeny from 1.1 cm s(-1) (15 DPH) to 23 cm s(-1) (50 and 55 DPH), and the distance swam by larvae in the endurance experiments increased from 0.01 km (15 DPH) to 86.5 km (45 DPH). This finding supports one of the premises of the SAAB hypothesis, which proposes that fish larvae can influence their transport and distribution in coastal areas due to their swimming capabilities. The relationship between larvae's physiological condition and swimming capabilities were not evident in this study. Overall, this study provides critical information for understanding the link between population dynamics and connectivity with the management and conservation of fish stocks.Funding Agency Portuguese Foundation for Science and Technology SFRH/BD/104209/2014 Portuguese Foundation for Science and Technology UID/Multi/04326/2019 FCT, under the Transitional Norm DL57/2016/CP[1361]/CT[CT0008 CLIMFISH project-A framework for assess vulnerability of coastal fisheries to climate change in Portuguese coast n2/SAICT/2017-SAICTinfo:eu-repo/semantics/publishedVersio

    The shock wave ignition of dusts

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76923/1/AIAA-1984-205.pd

    Research on dust explosions at the University of Michigan

    Full text link
    Dust explosion research carried out at the University of Michigan during the last two decades has been summarized. Significant results are presented on the smoldering combustion of dust heaps, turbulent combustion of premixed dust clouds, entrainment and combustion of layered dust, and on shock wave ignition of particles and shock wave initiated detonative combustion. Also, information on the detonation of hybrid mixtures and gaseous mixtures containing nonreactive particles is given.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29913/1/0000270.pd

    Investigation of organic dust detonation in the presence of chemically inert particles,

    Full text link
    The results of experimental studies of organic dust detonation in the presence of chemically inert particles are presented. Tests were carried out using a vertical detonation tube, and direct streak pictures showing the flame acceleration and pressure and temperature records were obtained. Flax dust, dispersed in an oxygen atmosphere, was used as the fuel, and two kinds of quartz sand were introduced as nonreacting particles. It was found that addition of inert particles caused a linear decrease of the detonation wave velocity but had no special influence on the transition distance. Calculations using the Gordon McBride Code Showed that propagation of the detonation wave in a dust-oxygen mixture requires that the dust particles burnout at a level of about 70% but addition of inert particles increased the necessary burnout level to over 80% (with a significant decrease of the detonation wave velocity).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31938/1/0000891.pd

    Dependence of pp->pp pi0 near Threshold on the Spin of the Colliding Nucleons

    Full text link
    A polarized internal atomic hydrogen target and a stored, polarized beam are used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot, as well as the polar integrals of the spin correlation coefficient combination A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding energies between 325 and 400 MeV. This experiment is made possible by the use of a cooled beam in a storage ring. The polarization observables are used to study the contribution from individual partial waves.Comment: 6 pages, 1 table, 4 figures, corrected equations 2 and

    Π“Π°Π·ΠΎΠΌΠ΅Ρ‚Π°Π½Π½Ρ‹ΠΉ \ газокислородный Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹ΠΉ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°

    Get PDF
    Π₯Ρ–ΠΌΡ–Ρ‡Π½Ρ– Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ– Π΄Π²ΠΈΠ³ΡƒΠ½ΠΈ – Ρ” Ρ– Π±ΡƒΠ΄ΡƒΡ‚ΡŒ Ρƒ ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌΡƒ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ ΡˆΠΈΡ€ΠΎΠΊΠΎ використовуваними Ρ€ΡƒΡˆΡ–ΡΠΌΠΈ для транспортування Π½Π° ΠΎΡ€Π±Ρ–Ρ‚Ρƒ Π—Π΅ΠΌΠ»Ρ–. Π†Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉΠ½Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ, постійно Π·Ρ€ΠΎΡΡ‚Π°ΡŽΡ‡Π΅ число супутників, які Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ Π²ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΠΈ Π½Π° ΠΎΡ€Π±Ρ–Ρ‚Ρƒ Π·ΠΌΡƒΡˆΡƒΡ” Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΠΊΡ–Π² Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΡ— Ρ‚Π΅Ρ…Π½Ρ–ΠΊΠΈ Π±ΡƒΠ΄ΡƒΠ²Π°Ρ‚ΠΈ Π΄Π²ΠΈΠ³ΡƒΠ½ΠΈ Π· Π±Ρ–Π»ΡŒΡˆ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ тяги Ρ– ΠΊΡ€Π°Ρ‰ΠΎΡŽ ΡΠΊΡ–ΡΡ‚ΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. Π— Ρ–Π½ΡˆΠΎΠ³ΠΎ Π±ΠΎΠΊΡƒ, для ΠΌΡ–Π½Ρ–ΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° Π½Π°Π²ΠΊΠΎΠ»ΠΈΡˆΠ½Ρ” сСрСдовищС Π² космічній промисловості, ΠΏΠ΅Ρ€Π΅Π΄Π±Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ використання Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ±Π΅Π·ΠΏΠ΅Ρ‡Π½ΠΈΡ… Π²ΠΈΠ΄Ρ–Π² ΠΏΠ°Π»ΠΈΠ²Π°. Одним Π· Π²ΠΈΠ΄Ρ–Π² ΠΏΠ°Π»ΠΈΠ²Π°, Ρ‰ΠΎ Ρ” Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ±Π΅Π·ΠΏΠ΅Ρ‡Π½ΠΈΠΌ Ρ– Π³Π°Ρ€Π°Π½Ρ‚ΡƒΡ” якісну Ρ€ΠΎΠ±ΠΎΡ‚Ρƒ, Ρ” ΠΌΠ΅Ρ‚Π°Π½. Π¦Π΅ ΠΏΠ°Π»ΠΈΠ²ΠΎ Π·Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² області інтСрСсів Π²ΡΠ΅ΡΠ²Ρ–Ρ‚Π½ΡŒΠΎΡ— Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΡ— Π³Π°Π»ΡƒΠ·Ρ–. Однак, Π½Π° ΡΡŒΠΎΠ³ΠΎΠ΄Π½Ρ–ΡˆΠ½Ρ–ΠΉ дСнь, лишС ΠΊΡ–Π»ΡŒΠΊΠ° Π΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π², Ρ‰ΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ ΠΌΠ΅Ρ‚Π°Π½ ΠΏΡ€ΠΎΠΉΡˆΠ»ΠΈ ΠΏΠΎΠ²Π½Ρƒ ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€ΠΊΡƒ, Ρ‰ΠΎ Π²ΠΊΠ°Π·ΡƒΡ” Π½Π° ΡˆΠΈΡ€ΠΎΠΊΡƒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΡ… ΡƒΠ΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½ΡŒ Ρ†Ρ–Ρ”Ρ— Ρ‚Π΅Ρ…Π½Ρ–ΠΊΠΈ.Π“ΠΎΠ»ΠΎΠ²Π½Π° ΠΌΠ΅Ρ‚Π° статті полягає Π² Ρ‚ΠΎΠΌΡƒ, Ρ‰ΠΎΠ± ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΡƒΠ²Π°Ρ‚ΠΈ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ використання ΠΌΠ΅Ρ‚Π°Π½Ρƒ як ΠΏΠ°Π»ΠΈΠ²Π° для Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΈΡ… Π΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π². Авторами Π· використанням ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΎΡ— Π³Π°Π·ΠΎΠ²ΠΎΡ— Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ (CFD) ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ– обчислСння Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡƒΠ½Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Ρ” основою для проСктування Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Ρ€Π°Π·ΠΊΠ°. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π΅ дослідТСння Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡƒΠ½Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ підтвСрдТСння ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚Ρ– ΠΎΠ±Ρ‡ΠΈΡΠ»Π΅Π½ΡŒ. Π£ ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌΡƒ ΠΏΠ»Π°Π½ΡƒΡ”Ρ‚ΡŒΡΡ випробовування систСми охолодТСння Π΄Π²ΠΈΠ³ΡƒΠ½Π°, Ρ‰ΠΎ Π±ΡƒΠ΄Π΅ Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½Π½ΡΠΌ Π΄Π°Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρƒ.Chemical rocket engines are still and will be in the foreseeable future the most widely used means of propulsion systems in transportation into the earth's orbit. What is more, information technologies need more and more satellites constellations to be replenished. This forces the rocket industry to build rocket engines with wider range of thrust and better performance. On the other hand, in order to minimize the influence on the environment, ecologically-safe propellants are considered to be used in space industry [1]. One of propellants, which is ecologically-safe and guarantees good overall performance is methane. This fuel is in area of interests of world's rocket industry. However, till today only a few methane rocket engines were tested, so it seems to be a wide area of possible improvements in this field. The main aim of the paper will be to analyze the possibility of using methane as a fuel for the rocket engine. The authors made the computations of a model rocket engine, fueled by methane, using CFD method. The analysis stands as the basis for the design of a model rocket engine. Experimental research to check the calculations’ validity as well as testing of its cooling system will complete the design.Π₯имичСскиС Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ Π² ΠΎΠ±ΠΎΠ·Ρ€ΠΈΠΌΠΎΠΌ Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ установками для транспортирования Π½Π° ΠΎΡ€Π±ΠΈΡ‚Ρƒ Π—Π΅ΠΌΠ»ΠΈ. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Π°Ρ ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ, постоянно растущСС число спутников, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π½Π° ΠΎΡ€Π±ΠΈΡ‚Ρƒ, Π²Ρ‹Π½ΡƒΠΆΠ΄Π°Π΅Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ с Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ тяги ΠΈ Π»ΡƒΡ‡ΡˆΠΈΠΌ качСством Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, для ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ влияния Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду Π² космичСской ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ, прСдполагаСтся использованиС экологичСски бСзопасных Π²ΠΈΠ΄ΠΎΠ² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. Одним ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ являСтся экологичСски-бСзопасным ΠΈ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ, являСтся ΠΌΠ΅Ρ‚Π°Π½. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎ находится Π² области интСрСсов всСмирной Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠΉ отрасли. Однако, Π½Π° сСгодняшний дСнь, лишь нСсколько Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π½, ΠΏΡ€ΠΎΡˆΠ»ΠΈ ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΡˆΠΈΡ€ΠΎΠΊΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΉ этой Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. Главная Ρ†Π΅Π»ΡŒ ΡΡ‚Π°Ρ‚ΡŒΠΈ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования ΠΌΠ΅Ρ‚Π°Π½Π° ΠΊΠ°ΠΊ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° для Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ. Авторами с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² числСнной Π³Π°Π·ΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ (CFD) ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ вычислСния ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎΠ³ΠΎ двигатСля. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· являСтся основой для проСктирования ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π°. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½ΠΎΠ²ΠΎΠ³ΠΎ двигатСля ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с Ρ†Π΅Π»ΡŒΡŽ подтвСрТдСния ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ вычислСний. Π’ Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ планируСтся испытаниС систСмы охлаТдСния Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ установки, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°

    Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching

    Get PDF
    Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or "mesophotic") coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60-69% bleached and 8-12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.XL Catlin Seaview Survey; Waitt Foundation; XL Catlin Group; Underwater Earth; University of Queensland; ARC Discovery Early Career Researcher Award (DECRA) [DE160101433]; Portuguese Science and Technology Foundation (FCT) [SFRH/BPD/110285/2015]; Australian Research Council (ARC

    The shock wave ignition of dusts

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76582/1/AIAA-9095-997.pd
    • …
    corecore