346 research outputs found
An ecohydrology model of the Guadiana Estuary (South Portugal)
A 1-D ecohydrology model is proposed that integrates physical, chemical and biological processes in the Guadiana Estuary during low flow conditions and that predicts the ecosystem health as determined by the following variables: river discharge, nutrients, suspended particulate matter,
phytoplankton, zooplankton, bivalves, zooplanktivorous fish and carnivorous/omnivorous fish. Low flow conditions prevail now that the Alqueva
dam has been constructed. The ecological sub-model is based on the non-linear Lotka-Volterra equation. The model is successful in capturing the observations of along-river changes in these variables. It suggests that both bottom-up and top-down ecological processes control the Guadiana Estuary ecosystem health. A number of sensitivity tests show that the model is robust and can be used to predict e within likely error bounds provided by the sensitivity tests e the consequences on the estuary ecosystem health of human activities throughout the river catchment, such as the irrigation farming downstream of the Alqueva dam, reclamation of the salt marshes by urban developments, and flow regulation
by the Alqueva dam. The model suggests that the estuarine ecosystem health requires transient river floods and is compromised by flow regulation by the Alqueva dam. Remedial measures are thus necessary
ΠΠΎΠ΄Π΅Π»Ρ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΡ, ΠΏΡΠΎΠ΅ΠΊΡ ΠΈ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ
ΠΠ° Π΄Π°Π½ΠΈΠΉ ΡΠ°Ρ Ρ Ρ ΠΌΠ°ΠΉΠ±ΡΡΠ½ΡΠΎΠΌΡ ΡΠ°ΠΊΠ΅ΡΠ½Ρ Π΄Π²ΠΈΠ³ΡΠ½ΠΈ Π±ΡΠ΄ΡΡΡ Π½Π°ΠΉΠ³ΠΎΠ»ΠΎΠ²Π½ΡΡΠΈΠΌΠΈ Π·Π°ΡΠΎΠ±Π°ΠΌΠΈ Π²ΠΈΠ²ΠΎΠ΄Ρ Π½Π° ΠΎΡΠ±ΡΡΡ ΠΊΠΎΡΠΌΡΡΠ½ΠΈΡ
ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΈΡ
Π°ΠΏΠ°ΡΠ°ΡΡΠ². Π Π΄Π°Π½ΠΈΠΉ ΡΠ°Ρ Π½Π°ΠΉΠ²Π°ΠΆΠ»ΠΈΠ²ΡΡΠΎΡ Π²ΠΈΠΌΠΎΠ³ΠΎΡ ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ Π΄Π²ΠΈΠ³ΡΠ½Π° ΡΠ°ΠΊΠ΅ΡΠΈ Ρ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ ΡΡ Π²Π°ΡΡΠΎΡΡΡ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π΅ Π·Π±ΡΠ»ΡΡΠ΅Π½Π½Ρ Π΅Π½Π΅ΡΠ³ΠΎΠ²ΡΠ΄Π΄Π°ΡΡ. ΠΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ ΡΠ°ΠΊΠ΅ΡΠ½ΠΈΡ
Π΄Π²ΠΈΠ³ΡΠ½ΡΠ² - Π΄ΠΎΠ²Π³ΠΎΡΡΠΈΠ²Π°Π»ΠΈΠΉ Ρ ΡΡΡΠ΄ΠΎΠΌΡΡΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅Ρ, ΠΌΠ΅ΡΠΎΡ ΡΠΊΠΎΠ³ΠΎ Ρ Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²ΠΎ Π΄Π΅ΡΠ΅Π²ΠΎΠ³ΠΎ Ρ Π²ΠΈΡΠΎΠΊΠΎΡΠΊΡΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡΠ½Π°, ΡΠΎ ΠΌΠ°Ρ ΠΌΡΠ½ΡΠΌΠ°Π»ΡΠ½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Π½Π°Π²ΠΊΠΎΠ»ΠΈΡΠ½Ρ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ΅. Π‘Π»ΡΠ΄ΡΡΡΠΈ Π·Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠΌ Π²ΠΈΠΌΠΎΠ³Π°ΠΌ, ΠΠ°ΡΡΠ°Π²ΡΡΠΊΠΈΠΉ Π’Π΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΉ Π£Π½ΡΠ²Π΅ΡΡΠΈΡΠ΅Ρ ΡΠΏΡΠ»ΡΠ½ΠΎ Π· ΠΠ°ΡΡΠ°Π²ΡΡΠΊΠΈΠΌ Π°Π²ΡΠ°ΡΡΠΉΠ½ΠΈΠΌ ΠΠ½ΡΡΠΈΡΡΡΠΎΠΌ ΡΠΎΠ·ΠΏΠΎΡΠ°Π»ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΡ Π΅ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π±Π΅Π·ΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΡΠ°ΠΊΠ΅ΡΠ½ΠΈΡ
Π΄Π²ΠΈΠ³ΡΠ½ΡΠ². ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΈΠΉ Π³ΡΠ±ΡΠΈΠ΄Π½ΠΈΠΉ Π΄Π²ΠΈΠ³ΡΠ½ ΡΠ°ΠΊΠ΅ΡΠΈ Π±ΡΠ² ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΈΠΉ Ρ Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠΉ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π²ΡΡΠΊΠΈ Π½ΠΎΠ²ΠΎΡ ΡΠΎΡΠΌΡΠ»ΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π°. ΠΠ°Π½Π° ΡΡΠ°ΡΡΡ ΠΌΡΡΡΠΈΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±Π΅Π·ΠΏΠ΅ΡΠ½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π΄Π²ΠΈΠ³ΡΠ½Π° Π· ΠΎΠΊΠΈΡΠ»ΡΠ²Π°ΡΠ΅ΠΌ Al/AN/HTPB, Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΠΈ ΠΏΡΠΈ ΡΡΠΎΠΌΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΈΠΉ Π΄ΠΎΡΠ»ΡΠ΄Π½ΠΈΠΉ ΡΡΠ΅Π½Π΄ ΠΏΠ΅ΡΠ΅Π²ΡΡΠΊΠΈ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π³ΡΠ±ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡΠ½Π°. ΠΡΠ½ΠΎΠ²Π½Π° ΠΌΠ΅ΡΠ° ΡΡΡΡ ΡΠΎΠ±ΠΎΡΠΈ β ΡΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡΠ½Π° Π· Π½Π°ΡΡΡΠΏΠ½ΠΎΡ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΠΉΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π°Π»ΡΡΠΎΠ³ΠΎ ΡΠΎΠ·Π²ΠΈΡΠΊΡ Ρ ΠΏΠΎΠ»ΡΠΏΡΠ΅Π½Π½Ρ.Now and in the foreseeable future rocket engine will be the most basic propulsion of space vehicle. Nowadays the most important condition in design of rocket engine is the cost reduction and increasing thrust to weight ratio as much as possible. The design of rocket engines is exhaustive and difficult process. It must produce low cost and high performance engine with minimal influence on the environment. Following these requirements, Warsaw University of Technology jointly with Institute of Aviation in Warsaw, started their own program on ecologically safe propulsion development. The experimental hybrid rocket motor has been designed and manufactured to test a new formula of solid fuel. The paper explores the performance and safety implications associated with the oxidizer enhanced Al/AN/HTPB grain by using of a laboratory scale hybrid rocket motor test stand. The main objective of this work was to design simple rocket engine that could smoothly be developed and possibly improved in the future.ΠΠ° Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ Π² ΠΎΠ±ΠΎΠ·ΡΠΈΠΌΠΎΠΌ Π±ΡΠ΄ΡΡΠ΅ΠΌ ΡΠ°ΠΊΠ΅ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ Π±ΡΠ΄ΡΡ ΡΠ°ΠΌΡΠΌΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ°ΠΌΠΈ ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ². Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠ°ΠΌΡΠΌ Π²Π°ΠΆΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΡΠ°ΠΊΠ΅ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π΅Π΅ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠ³ΠΈ ΠΊ Π²Π΅ΡΡ. ΠΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΠΊΠ΅ΡΠ½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ β ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈ ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ, ΡΠ΅Π»ΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ Π΄Π΅ΡΠ΅Π²ΠΎΠ³ΠΎ ΠΈ Π²ΡΡΠΎΠΊΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π½Π° ΠΎΠΊΡΡΠΆΠ°ΡΡΡΡ ΡΡΠ΅Π΄Ρ. Π‘Π»Π΅Π΄ΡΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ, ΠΠ°ΡΡΠ°Π²ΡΠΊΠΈΠΉ Π’Π΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π£Π½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅Ρ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ Ρ ΠΠ°ΡΡΠ°Π²ΡΠΊΠΈΠΌ Π°Π²ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈΠ½ΡΡΠΈΡΡΡΠΎΠΌ Π½Π°ΡΠ°Π»ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°ΠΊΠ΅ΡΠ½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΡΠ°Π½ΠΎΠ²ΠΎΠΊ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΡΠ°ΠΊΠ΅ΡΡ Π±ΡΠ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π½ΠΎΠ²ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠΎΠΏΠ»ΠΈΠ²Π°. ΠΠ°Π½Π½Π°Ρ ΡΡΠ°ΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Ρ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ΠΌ Al/AN/HTPB, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠΈ ΡΡΠΎΠΌ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠΉ ΠΈΡΠΏΡΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΡΠ΅Π½Π΄ ΠΏΡΠΎΠ²Π΅ΡΠΎΠΊ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠ΅Π»Ρ ΡΡΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ Π΅Π³ΠΎ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ
Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areas
The Sense Acuity and Behavioral (SAAB) Hypothesis proposes that the swimming capabilities and sensorial acuity of temperate fish larvae allows them to find and swim towards coastal nursery areas, which are crucial for their recruitment. To gather further evidence to support this theory, it is necessary to understand how horizontal swimming capability varies along fish larvae ontogeny. Therefore, we studied the swimming capability of white seabream Diplodus sargus (Linnaeus, 1758) larvae along ontogeny, and their relationship with physiological condition. Thus, critical swimming speed (U-crit) and the distance swam (km) during endurance tests were determined for fish larvae from 15 to 55 days post-hatching (DPH), and their physiological condition (RNA, DNA and protein contents) was assessed. The critical swimming speed of white seabream larvae increased along ontogeny from 1.1 cm s(-1) (15 DPH) to 23 cm s(-1) (50 and 55 DPH), and the distance swam by larvae in the endurance experiments increased from 0.01 km (15 DPH) to 86.5 km (45 DPH). This finding supports one of the premises of the SAAB hypothesis, which proposes that fish larvae can influence their transport and distribution in coastal areas due to their swimming capabilities. The relationship between larvae's physiological condition and swimming capabilities were not evident in this study. Overall, this study provides critical information for understanding the link between population dynamics and connectivity with the management and conservation of fish stocks.Funding Agency
Portuguese Foundation for Science and Technology
SFRH/BD/104209/2014
Portuguese Foundation for Science and Technology
UID/Multi/04326/2019
FCT, under the Transitional Norm
DL57/2016/CP[1361]/CT[CT0008
CLIMFISH project-A framework for assess vulnerability of coastal fisheries to climate change in Portuguese coast
n2/SAICT/2017-SAICTinfo:eu-repo/semantics/publishedVersio
The shock wave ignition of dusts
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76923/1/AIAA-1984-205.pd
Research on dust explosions at the University of Michigan
Dust explosion research carried out at the University of Michigan during the last two decades has been summarized. Significant results are presented on the smoldering combustion of dust heaps, turbulent combustion of premixed dust clouds, entrainment and combustion of layered dust, and on shock wave ignition of particles and shock wave initiated detonative combustion. Also, information on the detonation of hybrid mixtures and gaseous mixtures containing nonreactive particles is given.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29913/1/0000270.pd
Investigation of organic dust detonation in the presence of chemically inert particles,
The results of experimental studies of organic dust detonation in the presence of chemically inert particles are presented. Tests were carried out using a vertical detonation tube, and direct streak pictures showing the flame acceleration and pressure and temperature records were obtained. Flax dust, dispersed in an oxygen atmosphere, was used as the fuel, and two kinds of quartz sand were introduced as nonreacting particles. It was found that addition of inert particles caused a linear decrease of the detonation wave velocity but had no special influence on the transition distance. Calculations using the Gordon McBride Code Showed that propagation of the detonation wave in a dust-oxygen mixture requires that the dust particles burnout at a level of about 70% but addition of inert particles increased the necessary burnout level to over 80% (with a significant decrease of the detonation wave velocity).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31938/1/0000891.pd
Dependence of pp->pp pi0 near Threshold on the Spin of the Colliding Nucleons
A polarized internal atomic hydrogen target and a stored, polarized beam are
used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot,
as well as the polar integrals of the spin correlation coefficient combination
A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding
energies between 325 and 400 MeV. This experiment is made possible by the use
of a cooled beam in a storage ring. The polarization observables are used to
study the contribution from individual partial waves.Comment: 6 pages, 1 table, 4 figures, corrected equations 2 and
ΠΠ°Π·ΠΎΠΌΠ΅ΡΠ°Π½Π½ΡΠΉ \ Π³Π°Π·ΠΎΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π½ΡΠΉ ΡΠ°ΠΊΠ΅ΡΠ½ΡΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ°
Π₯ΡΠΌΡΡΠ½Ρ ΡΠ°ΠΊΠ΅ΡΠ½Ρ Π΄Π²ΠΈΠ³ΡΠ½ΠΈ β Ρ Ρ Π±ΡΠ΄ΡΡΡ Ρ ΠΌΠ°ΠΉΠ±ΡΡΠ½ΡΠΎΠΌΡ Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΡΠΈΡΠΎΠΊΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π½ΠΈΠΌΠΈ ΡΡΡΡΡΠΌΠΈ Π΄Π»Ρ ΡΡΠ°Π½ΡΠΏΠΎΡΡΡΠ²Π°Π½Π½Ρ Π½Π° ΠΎΡΠ±ΡΡΡ ΠΠ΅ΠΌΠ»Ρ. ΠΠ½ΡΠΎΡΠΌΠ°ΡΡΠΉΠ½Π° ΠΏΠΎΡΡΠ΅Π±Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΠΉ, ΠΏΠΎΡΡΡΠΉΠ½ΠΎ Π·ΡΠΎΡΡΠ°ΡΡΠ΅ ΡΠΈΡΠ»ΠΎ ΡΡΠΏΡΡΠ½ΠΈΠΊΡΠ², ΡΠΊΡ Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎ Π²ΠΈΠ²ΠΎΠ΄ΠΈΡΠΈ Π½Π° ΠΎΡΠ±ΡΡΡ Π·ΠΌΡΡΡΡ Π²ΠΈΡΠΎΠ±Π½ΠΈΠΊΡΠ² ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΡ ΡΠ΅Ρ
Π½ΡΠΊΠΈ Π±ΡΠ΄ΡΠ²Π°ΡΠΈ Π΄Π²ΠΈΠ³ΡΠ½ΠΈ Π· Π±ΡΠ»ΡΡ ΡΠΈΡΠΎΠΊΠΈΠΌ Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ ΡΡΠ³ΠΈ Ρ ΠΊΡΠ°ΡΠΎΡ ΡΠΊΡΡΡΡ ΡΠΎΠ±ΠΎΡΠΈ. Π ΡΠ½ΡΠΎΠ³ΠΎ Π±ΠΎΠΊΡ, Π΄Π»Ρ ΠΌΡΠ½ΡΠΌΡΠ·Π°ΡΡΡ Π²ΠΏΠ»ΠΈΠ²Ρ Π½Π° Π½Π°Π²ΠΊΠΎΠ»ΠΈΡΠ½Ρ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ΅ Π² ΠΊΠΎΡΠΌΡΡΠ½ΡΠΉ ΠΏΡΠΎΠΌΠΈΡΠ»ΠΎΠ²ΠΎΡΡΡ, ΠΏΠ΅ΡΠ΅Π΄Π±Π°ΡΠ°ΡΡΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π΅ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠ±Π΅Π·ΠΏΠ΅ΡΠ½ΠΈΡ
Π²ΠΈΠ΄ΡΠ² ΠΏΠ°Π»ΠΈΠ²Π°. ΠΠ΄Π½ΠΈΠΌ Π· Π²ΠΈΠ΄ΡΠ² ΠΏΠ°Π»ΠΈΠ²Π°, ΡΠΎ Ρ Π΅ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠ±Π΅Π·ΠΏΠ΅ΡΠ½ΠΈΠΌ Ρ Π³Π°ΡΠ°Π½ΡΡΡ ΡΠΊΡΡΠ½Ρ ΡΠΎΠ±ΠΎΡΡ, Ρ ΠΌΠ΅ΡΠ°Π½. Π¦Π΅ ΠΏΠ°Π»ΠΈΠ²ΠΎ Π·Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ Π² ΠΎΠ±Π»Π°ΡΡΡ ΡΠ½ΡΠ΅ΡΠ΅ΡΡΠ² Π²ΡΠ΅ΡΠ²ΡΡΠ½ΡΠΎΡ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΡ Π³Π°Π»ΡΠ·Ρ. ΠΠ΄Π½Π°ΠΊ, Π½Π° ΡΡΠΎΠ³ΠΎΠ΄Π½ΡΡΠ½ΡΠΉ Π΄Π΅Π½Ρ, Π»ΠΈΡΠ΅ ΠΊΡΠ»ΡΠΊΠ° Π΄Π²ΠΈΠ³ΡΠ½ΡΠ², ΡΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡ ΠΌΠ΅ΡΠ°Π½ ΠΏΡΠΎΠΉΡΠ»ΠΈ ΠΏΠΎΠ²Π½Ρ ΠΏΠ΅ΡΠ΅Π²ΡΡΠΊΡ, ΡΠΎ Π²ΠΊΠ°Π·ΡΡ Π½Π° ΡΠΈΡΠΎΠΊΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΡ
ΡΠ΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½Ρ ΡΡΡΡ ΡΠ΅Ρ
Π½ΡΠΊΠΈ.ΠΠΎΠ»ΠΎΠ²Π½Π° ΠΌΠ΅ΡΠ° ΡΡΠ°ΡΡΡ ΠΏΠΎΠ»ΡΠ³Π°Ρ Π² ΡΠΎΠΌΡ, ΡΠΎΠ± ΠΏΡΠΎΠ°Π½Π°Π»ΡΠ·ΡΠ²Π°ΡΠΈ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠ°Π½Ρ ΡΠΊ ΠΏΠ°Π»ΠΈΠ²Π° Π΄Π»Ρ ΡΠ°ΠΊΠ΅ΡΠ½ΠΈΡ
Π΄Π²ΠΈΠ³ΡΠ½ΡΠ². ΠΠ²ΡΠΎΡΠ°ΠΌΠΈ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΡΠ² ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡ Π³Π°Π·ΠΎΠ²ΠΎΡ Π΄ΠΈΠ½Π°ΠΌΡΠΊΠΈ (CFD) ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΠΎΠ±ΡΠΈΡΠ»Π΅Π½Π½Ρ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡΠ½Π°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· Ρ ΠΎΡΠ½ΠΎΠ²ΠΎΡ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ°Π·ΠΊΠ°. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠΎΠ±ΠΎΡΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³ΡΠ½Π° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π· ΠΌΠ΅ΡΠΎΡ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΎΠ±ΡΠΈΡΠ»Π΅Π½Ρ. Π£ ΠΌΠ°ΠΉΠ±ΡΡΠ½ΡΠΎΠΌΡ ΠΏΠ»Π°Π½ΡΡΡΡΡΡ Π²ΠΈΠΏΡΠΎΠ±ΠΎΠ²ΡΠ²Π°Π½Π½Ρ ΡΠΈΡΡΠ΅ΠΌΠΈ ΠΎΡ
ΠΎΠ»ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π΄Π²ΠΈΠ³ΡΠ½Π°, ΡΠΎ Π±ΡΠ΄Π΅ Π·Π°Π²Π΅ΡΡΠ΅Π½Π½ΡΠΌ Π΄Π°Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΡ.Chemical rocket engines are still and will be in the foreseeable future the most widely used means of propulsion systems in transportation into the earth's orbit. What is more, information technologies need more and more satellites constellations to be replenished. This forces the rocket industry to build rocket engines with wider range of thrust and better performance. On the other hand, in order to minimize the influence on the environment, ecologically-safe propellants are considered to be used in space industry [1]. One of propellants, which is ecologically-safe and guarantees good overall performance is methane. This fuel is in area of interests of world's rocket industry. However, till today only a few methane rocket engines were tested, so it seems to be a wide area of possible improvements in this field. The main aim of the paper will be to analyze the possibility of using methane as a fuel for the rocket engine. The authors made the computations of a model rocket engine, fueled by methane, using CFD method. The analysis stands as the basis for the design of a model rocket engine. Experimental research to check the calculationsβ validity as well as testing of its cooling system will complete the design.Π₯ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΠΊΠ΅ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΈ Π±ΡΠ΄ΡΡ Π² ΠΎΠ±ΠΎΠ·ΡΠΈΠΌΠΎΠΌ Π±ΡΠ΄ΡΡΠ΅ΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠΌΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ°ΠΌΠΈ Π΄Π»Ρ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΎΡΠ±ΠΈΡΡ ΠΠ΅ΠΌΠ»ΠΈ. ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ, ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ ΡΠ°ΡΡΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ ΡΠΏΡΡΠ½ΠΈΠΊΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠ²ΠΎΠ΄ΠΈΡΡ Π½Π° ΠΎΡΠ±ΠΈΡΡ, Π²ΡΠ½ΡΠΆΠ΄Π°Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ ΡΡΡΠΎΠΈΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠΈΡΠΎΠΊΠΈΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ ΡΡΠ³ΠΈ ΠΈ Π»ΡΡΡΠΈΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎΠΌ ΡΠ°Π±ΠΎΡΡ. Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, Π΄Π»Ρ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΠΎΠΊΡΡΠΆΠ°ΡΡΡΡ ΡΡΠ΅Π΄Ρ Π² ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΡΡΠΈ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠΏΠ»ΠΈΠ²Π°. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠΏΠ»ΠΈΠ²Π°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ-Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΠΌ ΠΈ Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠ°Π±ΠΎΡΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠ°Π½. ΠΡΠΎ ΡΠΎΠΏΠ»ΠΈΠ²ΠΎ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ² Π²ΡΠ΅ΠΌΠΈΡΠ½ΠΎΠΉ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΡΠ°ΡΠ»ΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ, Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ, Π»ΠΈΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΡ
ΠΌΠ΅ΡΠ°Π½, ΠΏΡΠΎΡΠ»ΠΈ ΠΏΠΎΠ»Π½ΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΊΡ, ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΠΈΡΠΎΠΊΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠΎΠΉ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ. ΠΠ»Π°Π²Π½Π°Ρ ΡΠ΅Π»Ρ ΡΡΠ°ΡΡΠΈ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π½Π° ΠΊΠ°ΠΊ ΡΠΎΠΏΠ»ΠΈΠ²Π° Π΄Π»Ρ ΡΠ°ΠΊΠ΅ΡΠ½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ. ΠΠ²ΡΠΎΡΠ°ΠΌΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠΉ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ (CFD) ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ°. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ. Π Π±ΡΠ΄ΡΡΠ΅ΠΌ ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΡΡΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ°
Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching
Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or "mesophotic") coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60-69% bleached and 8-12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.XL Catlin Seaview Survey; Waitt Foundation; XL Catlin Group; Underwater Earth; University of Queensland; ARC Discovery Early Career Researcher Award (DECRA) [DE160101433]; Portuguese Science and Technology Foundation (FCT) [SFRH/BPD/110285/2015]; Australian Research Council (ARC
The shock wave ignition of dusts
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76582/1/AIAA-9095-997.pd
- β¦