54 research outputs found

    GaN resistive hydrogen gas sensors

    Get PDF
    GaN epilayers grown by organometallic vapor phase epitaxy have been used to fabricate resistivegas sensors with a pair of planar ohmic contacts. Detectible sensitivity to H2 gas for a wide range of gas mixtures in an Ar ambient has been realized; the lowest concentration tested is ∼0.1% H2 (in Ar), well below the lower combustion limit in air. No saturation of the signal is observed up to 100% H2 flow. Real-time response to H2 shows a clear and sharp response with no memory effects during the ramping cycles of H2 concentration. The change in current at a fixed voltage to hydrogen was found to change with sensor geometry. This appears to be consistent with a surface-adsorption-induced change of conductivity; a detailed picture of the gas sensing mechanism requires further systematic studies

    Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways

    Get PDF
    A specific small-molecule inhibitor of p97 would provide an important tool to investigate diverse functions of this essential ATPase associated with diverse cellular activities (AAA) ATPase and to evaluate its potential to be a therapeutic target in human disease. We carried out a high-throughput screen to identify inhibitors of p97 ATPase activity. Dual-reporter cell lines that simultaneously express p97-dependent and p97-independent proteasome substrates were used to stratify inhibitors that emerged from the screen. N^2,N^4-dibenzylquinazoline-2,4-diamine (DBeQ) was identified as a selective, potent, reversible, and ATP-competitive p97 inhibitor. DBeQ blocks multiple processes that have been shown by RNAi to depend on p97, including degradation of ubiquitin fusion degradation and endoplasmic reticulum-associated degradation pathway reporters, as well as autophagosome maturation. DBeQ also potently inhibits cancer cell growth and is more rapid than a proteasome inhibitor at mobilizing the executioner caspases-3 and -7. Our results provide a rationale for targeting p97 in cancer therapy

    Regulation of immune cell function and differentiation by the NKG2D receptor

    Get PDF
    NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation

    A fate worse than death: apoptosis as an oncogenic process

    Full text link

    Study of surface chemical changes and erosion rates for CV-1144-O silicone under electron cyclotron resonance oxygen plasma exposure

    Get PDF
    CV-1144-O silicone thin films were irradiated in an electron cyclotron resonance oxygen plasma, which is a simulation of the low earth orbital environment. A crude equivalence between this plasma system and the low earth orbital environment was determined by measuring Kapton weight loss in the plasma and comparing to Kapton weight loss in space experiments. Changes in optical properties and erosion rates under ultraviolet light and atomic oxygen radiation were studied using in situ spectroscopic ellipsometry (SE). The erosion rate at the beginning of the plasma exposure was significantly faster than that at later stages. Approximately one third of the total silicone thickness was etched away within 1 h, which according to the equivalence experiment, corresponds to about two months in low earth orbit. The refractive index of silicone in the visible range increased during the exposure, indicating that the film was being densified. Optical constants (both before and after plasma exposure) were determined by ex situ spectroscopic ellipsometry in the ultraviolet– visible–near-infrared (0.7–8.5 eV) and IR (200–7000 cm-1) ranges. Also, SE was used to map thickness and uniformity before and after radiation. Regression fits using Lorentzian and Gaussian oscillators as parametric models for the optical constants were excellent, and the major absorption peaks in the IR region were identified. The before- and after-radiation spectra showed significant decreases in CH3-associated peaks and increases in SiOx-associated peaks
    corecore