118 research outputs found

    Acceleration of bouncing balls in external fields

    Full text link
    We introduce two models, the Fermi-Ulam model in an external field and a one dimensional system of bouncing balls in an external field above a periodically oscillating plate. For both models we investigate the possibility of unbounded motion. In a special case the two models are equivalent

    Infinitesimal Lyapunov functions for singular flows

    Full text link
    We present an extension of the notion of infinitesimal Lyapunov function to singular flows, and from this technique we deduce a characterization of partial/sectional hyperbolic sets. In absence of singularities, we can also characterize uniform hyperbolicity. These conditions can be expressed using the space derivative DX of the vector field X together with a field of infinitesimal Lyapunov functions only, and are reduced to checking that a certain symmetric operator is positive definite at the tangent space of every point of the trapping region.Comment: 37 pages, 1 figure; corrected the statement of Lemma 2.2 and item (2) of Theorem 2.7; removed item (5) of Theorem 2.7 and its wrong proof since the statement of this item was false; corrected items (1) and (2) of Theorem 2.23 and their proofs. Included Example 6 on smooth reduction of families of quadratic forms. The published version in Math Z journal needs an errat

    Optimum spectral window for imaging of art with optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general

    Autocorrelation function of eigenstates in chaotic and mixed systems

    Full text link
    We study the autocorrelation function of different types of eigenfunctions in quantum mechanical systems with either chaotic or mixed classical limits. We obtain an expansion of the autocorrelation function in terms of the correlation length. For localized states, like bouncing ball modes or states living on tori, a simple model using only classical input gives good agreement with the exact result. In particular, a prediction for irregular eigenfunctions in mixed systems is derived and tested. For chaotic systems, the expansion of the autocorrelation function can be used to test quantum ergodicity on different length scales.Comment: 30 pages, 12 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    Spectral Statistics in the Quantized Cardioid Billiard

    Full text link
    The spectral statistics in the strongly chaotic cardioid billiard are studied. The analysis is based on the first 11000 quantal energy levels for odd and even symmetry respectively. It is found that the level-spacing distribution is in good agreement with the GOE distribution of random-matrix theory. In case of the number variance and rigidity we observe agreement with the random-matrix model for short-range correlations only, whereas for long-range correlations both statistics saturate in agreement with semiclassical expectations. Furthermore the conjecture that for classically chaotic systems the normalized mode fluctuations have a universal Gaussian distribution with unit variance is tested and found to be in very good agreement for both symmetry classes. By means of the Gutzwiller trace formula the trace of the cosine-modulated heat kernel is studied. Since the billiard boundary is focusing there are conjugate points giving rise to zeros at the locations of the periodic orbits instead of exclusively Gaussian peaks.Comment: 20 pages, uu-encoded ps.Z-fil

    Regular and chaotic interactions of two BPS dyons at low energy

    Full text link
    We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of Poincare surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications for intermittency are also discussed.Comment: 22 pages, 6 figures (v2 contains a few additional references, a new paragraph on intermittency and minor stylistic corrections to agree with the published version

    Chaotic eigenfunctions in momentum space

    Full text link
    We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.Comment: 30 pages. The figures are included in low resolution only. For a version with figures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp99-2.htm

    Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems

    Full text link
    The master equation approach to Lyapunov spectra for many-particle systems is applied to non-equilibrium thermostatted systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostatted systems with a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to describe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed tangent vector dynamics, which allows us to calculate the negative Lyapunov exponents. Using the Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is satisfied for thermostatted systems with a shear flow in the thermodynamic limit. We also give an explicit form to connect the Lyapunov exponents with the time-correlation of the interaction matrix in a thermostatted system with a color field.Comment: 10 page

    About ergodicity in the family of limacon billiards

    Get PDF
    By continuation from the hyperbolic limit of the cardioid billiard we show that there is an abundance of bifurcations in the family of limacon billiards. The statistics of these bifurcation shows that the size of the stable intervals decreases with approximately the same rate as their number increases with the period. In particular, we give numerical evidence that arbitrarily close to the cardioid there are elliptic islands due to orbits created in saddle node bifurcations. This shows explicitly that if in this one parameter family of maps ergodicity occurs for more than one parameter the set of these parameter values has a complicated structure.Comment: 17 pages, 9 figure

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]
    • …
    corecore