23 research outputs found

    A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes

    Get PDF
    Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease, therapeutic drug screening, and transplant-based regenerative medicine. However, methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here, we present a novel, small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3beta (GSK3beta) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2), we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG+ cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC), sporadic FTD, and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid, efficient, and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. SIGNIFICANCE: Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy, terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved. Myotubes derived from patients carrying the C9orf72 repeat expansion show no change in differentiation efficiency and normal TDP-43 localization after as many as 120 days in vitro when compared to unaffected controls. This study provides an efficient, novel protocol for the generation of skeletal myotubes from human induced pluripotent stem cells that may serve as a valuable tool in drug discovery and modeling of musculoskeletal and neuromuscular diseases

    A Multiancestral Genome-Wide Exome Array Study of Alzheimer Disease, Frontotemporal Dementia, and Progressive Supranuclear Palsy

    Get PDF
    Importance Previous studies have indicated a heritable component of the etiology of neurodegenerative diseases such as Alzheimer disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP). However, few have examined the contribution of low-frequency coding variants on a genome-wide level. Objective To identify low-frequency coding variants that affect susceptibility to AD, FTD, and PSP. Design, Setting, and Participants We used the Illumina HumanExome BeadChip array to genotype a large number of variants (most of which are low-frequency coding variants) in a cohort of patients with neurodegenerative disease (224 with AD, 168 with FTD, and 48 with PSP) and in 224 control individuals without dementia enrolled between 2005-2012 from multiple centers participating in the Genetic Investigation in Frontotemporal Dementia and Alzheimer’s Disease (GIFT) Study. An additional multiancestral replication cohort of 240 patients with AD and 240 controls without dementia was used to validate suggestive findings. Variant-level association testing and gene-based testing were performed. Main Outcomes and Measures Statistical association of genetic variants with clinical diagnosis of AD, FTD, and PSP. Results Genetic variants typed by the exome array explained 44%, 53%, and 57% of the total phenotypic variance of AD, FTD, and PSP, respectively. An association with the known AD gene ABCA7 was replicated in several ancestries (discovery P = .0049, European P = .041, African American P = .043, and Asian P = .027), suggesting that exonic variants within this gene modify AD susceptibility. In addition, 2 suggestive candidate genes, DYSF (P = 5.53 × 10−5) and PAXIP1 (P = 2.26 × 10−4), were highlighted in patients with AD and differentially expressed in AD brain. Corroborating evidence from other exome array studies and gene expression data points toward potential involvement of these genes in the pathogenesis of AD. Conclusions and Relevance Low-frequency coding variants with intermediate effect size may account for a significant fraction of the genetic susceptibility to AD and FTD. Furthermore, we found evidence that coding variants in the known susceptibility gene ABCA7, as well as candidate genes DYSF and PAXIP1, confer risk for AD

    GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small IntestineSummary

    No full text
    Background & Aims: Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. Methods: To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. Results: We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. Conclusions: Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4âs function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870. Keywords: Transcriptional Regulation, Jejunal Identity, Enterohepatic Signaling, Fgf15, FX

    Epigenetic clock and methylation studies in vervet monkeys.

    No full text
    DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets

    Sex-Related Differences in the Relationship Between β-Amyloid and Cognitive Trajectories in Older Adults

    No full text
    Objective: We aimed to test the hypothesis that elevated neocortical β-amyloid (Aβ), a hallmark feature of Alzheimer's disease (AD), predicts sex-specific cognitive trajectories in clinically normal older adults, with women showing greater risk of decline than men. Method: Florbetapir Aβ positron emission tomography (PET) was acquired in 149 clinically normal older adults (52% female, Mage = 74). Participants underwent cognitive testing at baseline and during annual follow-up visits over a timespan of up to 5.14 years. Mixed-effects regression models evaluated whether relations between baseline neocortical Standardized Uptake Value Ratio (SUVR) and composite scores of episodic memory, executive functioning, and processing speed were moderated by sex (male/female) and apolipoprotein E (APOE) status (ε4 carrier/noncarrier). Results: Higher baseline SUVR was associated with longitudinal decline in episodic memory in women (b = -1.32, p < .001) but not men (b = -0.30, p = .28). Female APOE ε4 carriers with elevated SUVR showed particularly precipitous declines in episodic memory (b = -4.33, p < .001) whereas other cognitive domains were spared. SUVR did not predict changes in executive functioning or processing speed, regardless of sex (ps >.63), though there was a main effect of SUVR on processing speed (b = 2.50, p = .003). Conclusions: Clinically normal women with elevated Aβ are more vulnerable to episodic memory decline than men. Understanding sex-related differences in AD, particularly in preclinical stages, is crucial for guiding precision medicine approaches to early detection and intervention. (PsycInfo Database Record (c) 2020 APA, all rights reserved)
    corecore